Gravitational Wave Data Analysis with Machine Learning
This page will give an overview of some problems in gravitational wave data analysis and how researchers are trying to solve them with machine learning. It will include improving data quality, searches for binary black holes and unmodelled gravitational wave bursts, and the astrophysics of gravitational wave sources. I do not include every study in these areas but will do my best. The list can also be found in a web-based Zotero group.
- MLA Web (private access)
- G2Net Gravitational Wave Detection (Kaggle data science competation)
- G2Net Detecting Continuous Gravitational Waves (Kaggle data science competation)
- NSF - Mathematical Sciences Institutes (video)
- FastML Lab - Real-time and accelerated ML for fundamental sciences
- Accelerated AI Algorithms for Data-Driven Discovery (A3D3) (Youtube channel)
- NSF HDR A3D3: Detecting Anomalous Gravitational Wave Signals (Codabench competition)
1. Conferences & Workshops¶
- The NSF AI Institute for Artificial Intelligence and Fundamental Interactions (IAIFI) - Events - (Home)
- The IST seminar series Mathematics, Physics & Machine Learning - (M \cup \Phi) \cap M L - (Home)
- Physics Meets ML - \text{Physics} \cap \text{ML} - (Home)
- Community Laboratory for AI Research at the Intersection with Physics (CLARIPHY) - Topical Meetings - (Home)
-
Laboratory for Artificial Intelligence for Scientific Discovery - (Home)
-
(Dec 8, 2017) - Deep Learning for Physical Sciences (workshop at NeurIPS)
- (Oct 17, 2018) - Deep Learning for Multimessenger Astrophysics: Real-time Discovery at Scale
- (Sep 10, 2019) - Fast Machine Learning Workshop at Fermi National Accelerator Laboratory
- (Dec 14, 2019) - Machine Learning and the Physical Sciences (workshop at NeurIPS)
- (March 9, 2020) - CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning - 2nd Training School (G2NET)
- (April 21, 2020) - Machine Learning for Physicists 2020
- (19 Oct, 2020) - 2020 Accelerated Artificial Intelligence for Big-Data Experiments Conference
- (Sep 9, 2020) - Advances in Computational Relativity
- (Oct 19, 2020) - 2020 Accelerated Artificial Intelligence for Big-Data Experiments Conference
- (Nov 16, 2020) - Statistical Methods for the Detection, Classification, and Inference of Relativistic Objects
- (Dec 12, 2020) - Interpretable Inductive Biases and Physically Structured Learning (workshop at NeurIPS)
- (May 27, 2020) - Ellis Fellows Program Quantum and Physics based Machine Learning (QPhML) (2021, 2020, 2019)
- (Dec 13, 2021) - Machine Learning and the Physical Sciences (2021, 2020) (workshop at NeurIPS)
- (Dec 6, 2021) - AI for Science: Mind the Gaps (NeurIPS 2021)
- (Nov 14, 2021) - Detection and Analysis of Gravitational Waves in the era of Multi-Messenger Astronomy: From Mathematical Modelling to Machine Learning (21w5066)
- (Nov 29, 2021) - Workshop IV: Big Data in Multi-Messenger Astrophysics (Part of the Long Program Mathematical and Computational Challenges in the Era of Gravitational Wave Astronomy)
- (July 23, 2022) - AI for Science: Theories and Foundations (ICML 2022)
- (July 22, 2022) - Machine Learning for Astrophysics (ICML 2022)
- (August 1-9, 2022) - IAIFI Summer School & Workshop, 2022 | Recap
- (September 28-30, 2022) - Machine Learning in GW search: g2net next challenges
- (Nov 21-25, 2022) - LISA data analysis: from classical methods to machine learning
- (Dec 2, 2022) - AI for Science: Progress and Promises (NeurIPS 2022)
- (January 28, 2023) - Accelerating Physics with ML@MIT
- (March 28-30, 2023) - G2Net - A network for Gravitational Waves, Geophysics and Machine Learning (CA17137)
- (July 28, 2023) - Machine Learning for Astrophysics (ICML 2023)
- (May 22, 2023) - Cosmic Connections: A ML X Astrophysics Symposium at Simons Foundation
- (Dec 15, 2023) - AI for Scientific Discovery: From Theory to Practice (NeurIPS 2023)
- (April 23, 2024) - The 2024 AIslands meeting focusing on artificial intelligence in gravitational wave astronomy.
- (June 17, 2024) - AstroAI Workshop - Unveiling the Universe with AI/ML
- (Nov 17, 2024) - Detection and Analysis of Gravitational Waves in the era of Multi-Messenger Astronomy (24w5177)
- (June 2, 2025) - Scientific Machine Learning for Gravitational Wave Astronomy (ICERM)
2. General Reports & Reviews¶
Modern deep learning methods have entered the field of physics which can be tasked with learning physics from raw data when no good mathematical models are available. They are also part of mathematical model and machine learning hybrids, formed to reduce computational costs by having the mathematical model train a machine learning model to perform its job, or to improve the fit with observations in settings where the mathematical model can’t incorporate all details (think noise).
- [Wong (2023)] - MACHINE LEARNING-ENHANCED ANALYSIS IN GW (slide)
- [Agarwal et al. (2023) 1 (2306.08106)] - Applications of Deep Learning to Physics Workflows
- [Huerta et al. (2022) 2 (Scientific Data)] - FAIR for AI: An Interdisciplinary, International, Inclusive, and Diverse Community Building Perspective
- [Cuoco et al. (2022) 3 (Nature Computational Science)] - Computational Challenges for Multimodal Astrophysics
- [Ravi et al. (2022) 4 (Scientific Data)] - FAIR Principles for AI Models, with a Practical Application for Accelerated High Energy Diffraction Microscopy
- [Gunny et al. (2022) [@10.1145/3526058.3535454] (ACM)] - A Software Ecosystem for Deploying Deep Learning in Gravitational Wave Physics
- [Harris et al. (2022) 5 (2203.16255)] - Physics Community Needs, Tools, and Resources for Machine Learning
- [Deiana et al. (2022) 6 ( Front. big data)] - Applications and Techniques for Fast Machine Learning in Science
- [Dvorkin et al. (2022) 7 (2203.08056)] - Machine Learning and Cosmology
- [Smith (2021) 8 (Nature Physics)] - OK Computer
- [Ntampaka et al. (2021) 9 (2111.14566)] - Building Trustworthy Machine Learning Models for Astronomy
- [Huerta & Zhao (2021) 10 (Handbook of Gravitational Wave Astronomy)] - Advances in Machine and Deep Learning for Modeling and Real-time Detection of Multi-messenger Sources
- [Agrawal et al. (2020) 11 (Springer Singapore)] - Machine Learning Based Analysis of Gravitational Waves
- [Huerta et al. (2021) 12 (Nature Astronomy)] - Accelerated, Scalable and Reproducible AI-driven Gravitational Wave Detection
- [Coughlin (2020) 13 (Nature Astronomy)] - Lessons from Counterpart Searches in LIGO and Virgo’s Third Observing Campaign
- [Zdeborová (2020) 14 (Nature Physics)] - Understanding Deep Learning Is Also a Job for Physicists
- [Cuoco et al. (2020) 15 (Mach. learn.: sci. technol.)] - Enhancing Gravitational-wave Science with Machine Learning
- [Huerta et al. (2020) 16 (J. Big Data)] - Convergence of Artificial Intelligence and High Performance Computing on NSF-supported Cyberinfrastructure
- [Fluke et al. (2020) 17 (WIRDMKD)] - Surveying the reach and maturity of machine learning and artificial intelligence in astronomy
- Viewpoint: Machine Learning Tackles Spacetime By Enrico Rinaldi March 23, 2020 - Physics 13, 40
- [Huerta et al. (2019) 18 (CSBS)] - Supporting High-Performance and High-Throughput Computing for Experimental Science
- [Huerta et al. (2019) 19 (Nature Reviews Physics)] - Enabling Real-Time Multi-Messenger Astrophysics Discoveries with Deep Learning
- [Allen et al. (2019) 20 (1902.00522)] - Deep Learning for Multi-Messenger Astrophysics: A Gateway for Discovery in the Big Data Era
- [Eadie et al. (2019) 21 (1909.11714)] - Realizing the Potential of Astrostatistics and Astroinformatics
- [Foley et al. (2019) 22 (1903.04553)] - Gravity and Light-Combining Gravitational Wave and Electromagnetic Observations in the 2020s
3. Improving Data Quality¶
Machine learning techniques have proved to be powerful tools in analyzing complex problems by learning from large example datasets. They have been applied in GW science from as early as [Lightman et al. (2006) 23 (JPCS)] to the study of glitches [Essick et al. (2013) 24 (CQG); Biswas et al. (2013) 25 (PRD)] and other problems, such as signal characterization [Baker et al. (2015) 26 (PRD)] . For example, Gstlal-iDQ [Vaulin et al. (2013) 27] (a streaming machine learning pipeline based on [Essick et al. (2013) 24 (CQG)] and [Biswas et al. (2013) 25 (PRD)] reported the probability that there was a glitch in h(t) based on the presence of glitches in witness sensors at the time of the event. In O2, iDQ was used to vet unmodeled low-latency pipeline triggers automatically.
Glitch Classification¶
Some glitches occur only in the GW data channel. We can try and eliminate them by classifying them into different types to help identify their origin. Unfortunately, there is a number of identified classes of glitches for which mitigation methods are not yet understood. For these glitch classes, understanding how searches can separate instrumental transients from similar astrophysical signals is the highest priority [Davis et al. (2020) 28 (CQG)].
-
PCA based
-
Early ML studies for glitch classification used Principal Component Analysis (PCA) and Gaussian Mixture Models (GMM). (See [Powell et al. (2015) 29 (CQG)] test on simulated data & [Powell et al. (2017) 30 (CQG)] test on real data). A trigger generator finds the glitches. The time series of whitened glitches are stored in a matrix D on which PCA is performed. See more on [Powell (2017) 31 (PhD Thesis); Cuoco (2018) 32 (Workshop)]
-
PCA is an orthogonal linear transformation that transforms a set of correlated variables into another set of linearly uncorrelated variables, called Principal Components (PCs). The matrix D is factored so that D= U\Sigma V^T where V=A^TA, \Sigma contains eigenvalues, and U is the PCs. PC coefficients are calculated by taking the dot product of the PCs and the whitened glitch. Then GMM clustering is applied to the PC coefficients. These studies were then improved with the use of Neural Networks.
-
-
CNN (Images feature)
- [Razzano & Cuoco 2018 33 (CQG)] apply a CNN to simulated glitches. They build images that cover 2 seconds around each glitch from the whitened time series. Simulated six families of signals. Training, validation, and test set with ratio 70:15:15. Accuracy in the order of ≈98-99% on multiclass classification
- [George et al. (2018) 34 (PRD)]: “Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits Convolutional Neural Networks to classify glitches starting from their time frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.”
-
Wavelet-based (Time series feature)
- [Cuoco et al. (2018) 35 (IEEE)] - Wavelet-Based Classification of Transient Signals for Gravitational Wave Detectors
-
GravitySpy Project
- GravitySpy [Zevin et al. (2017) 36 (CQG); Coughlin et al. (2019) 37 (PRD)] uses citizen scientists to produce training sets for machine learning glitch classification.
- (How do I try it myself?) Log into gravityspy.org to try classifying glitches. Download already labelled LIGO glitches for training your algorithm from zenodo One / Two.
- [Soni et al. (2021) 38 (CQG)] - Discovering Features in Gravitational-wave Data through Detector Characterization, Citizen Science and Machine Learning
-
Others / Pending:
- [Staats & Cavaglià (2018) 39 (Commun. Comput. Phys.)] - Finding the origin of noise transients in LIGO data with machine learning (Karoo GP)
- [Mukund et al. (2017) 40 (PRD)] - Transient classification in LIGO data using difference boosting neural network (Wavelet-DBNN, India)
- [Llorens-Monteagudo et al. (2019) 41 (CQG)] - Classification of gravitational-wave glitches via dictionary learning (Dictionary learning)
- Low latency transient detection and classification (I. Pinto, V. Pierro, L. Troiano, E. Mejuto-Villa, V. Matta, P. Addesso)
- [George et al. (2018) 34 (PRD)] - Classification and unsupervised clustering of LIGO data with Deep Transfer Learning (Deep Transfer Learning)
- [Astone et al. (2018) 42 (PRD)] - New method to observe gravitational waves emitted by core collapse supernovae (RGB image SN CNN)
- [Colgan et al. (2020) 43 (PRD)] - Efficient gravitational-wave glitch identification from environmental data through machine learning
- [Bahaadini et al. (2017) 44 (IEEE)] - Deep Multi-View Models for Glitch Classification
- [Bahaadini et al. (2018) 45 (Info. Sci.)] - Machine learning for Gravity Spy: Glitch classification and dataset
- [Bahaadini et al. (2018) 46 (IEEE)] - DIRECT: Deep Discriminative Embedding for Clustering of LIGO Data
- Young-Min Kim - Noise Identification in Gravitational wave search using Artificial Neural Networks (PDF) (4th K-J workshop on KAGRA @ Osaka Univ.)
- [Biswas et al. (2020) 47 (CQG)] - New Methods to Assess and Improve LIGO Detector Duty Cycle
- [Morales-Alvarez et al. (2020) 48 (IEEE)] - Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
- [Marianer et al. (2020) 49 (Mon. Not. Roy. Astron. Soc.)] - A Semisupervised Machine Learning Search for Never-seen Gravitational-wave Sources
- [Mesuga & Bayanay (2021) 50 (2107.01863)] - On the Efficiency of Various Deep Transfer Learning Models in Glitch Waveform Detection in Gravitational-wave Data
- [Sankarapandian & Kulis (2021) 51 (2107.10667)] - β-Annealed Variational Autoencoder for Glitches
- [Yu & Adhikari (2021) 52 (2111.03295)] - Nonlinear Noise Regression in Gravitational-Wave Detectors with Convolutional Neural Networks
- [Sakai et al. (2021) 53 (2111.10053)] - Unsupervised Learning Architecture for Classifying the Transient Noise of Interferometric Gravitational-wave Detectors
- [Merritt et al. (2021) 54 (PRD)] - Transient Glitch Mitigation in Advanced LIGO Data
- [Colgan et al. (2022) 55 (2202.13486)] - Architectural Optimization and Feature Learning for High-Dimensional Time Series Datasets
- [Davis et al. (2022) 56 (2204.03091)] - Incorporating Information from LIGO Data Quality Streams into the PyCBC Search for Gravitational Waves
- [Bahaadini et al. (2022) 57 (2205.13672)] - Discriminative Dimensionality Reduction Using Deep Neural Networks for Clustering of LIGO Data
- [Yan et al. (2022) 58 (Mon. Not. Roy. Astron. Soc.)] - On Improving the Performance of Glitch Classification for Gravitational Wave Detection by Using Generative Adversarial Networks
- [Sakai et al. (2022) 59 (2208.03623)] - Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset
- [Powell et al. (2022) 60 (CQG)] Generating Transient Noise Artifacts in Gravitational-Wave Detector Data with Generative Adversarial Networks
- [Iqbal (2022) 61 (ResearchGate)] - Classifying the Gravitational Waves Using the Deep Learning Technique
- [Ferreira et al. (2022) 62 (CQG)] - Comparison between T-SNE and Cosine Similarity for LIGO Glitches Analysis
- [Dooney et al. (2022) 63 (2209.13592)] - DVGAN: Stabilize Wasserstein GAN Training for Time-Domain Gravitational Wave Physics
- [Boudart et al. (2022) 64 (2210.04588)] - A Convolutional Neural Network to Distinguish Glitches from Minute-Long Gravitational Wave Transients
- [Bişkin et al. (2022) 65 (Astron. Comput.)] - A Fast and Time-Efficient Glitch Classification Method: A Deep Learning-Based Visual Feature Extractor for Machine Learning Algorithms
- [Ruiz et al. (2022) 66 (KBS)] - Probabilistic Fusion of Crowds and Experts for the Search of Gravitational Waves
- [Razzano et al. (2022) 67 (Nucl. Instrum.)] - GWitchHunters: Machine Learning and Citizen Science to Improve the Performance of Gravitational Wave Detector
- [Bini et al. (2023) 68 (2303.05986)] - An Autoencoder Neural Network Integrated into Gravitational-Wave Burst Searches to Improve the Rejection of Noise Transients
- [Fernandes et al. (2023) 69 (2303.13917)] - Convolutional Neural Networks for the Classification of Glitches in Gravitational-Wave Data Streams
- [Alvarez-Lopez et al. (2023) [@2023Alvarez-LopezGSpyNetTreesignalvsglitchclassifier] (2304.09977)] - GSpyNetTree: A Signal-vs-Glitch Classifier for Gravitational-Wave Event Candidates
- [Shah et al. (2023) 70 (2306.13787)] - Waves in a Forest: A Random Forest Classifier to Distinguish between Gravitational Waves and Detector Glitches
- [Raza et al. (2023) 71 (2308.12357)] - Explaining the GWSkyNet-Multi Machine Learning Classifier Predictions for Gravitational-Wave Events
Glitch cancellation / GW denosing¶
- Pending:
- [Cuoco et al. (2001) 72 (CQG)] - On-line power spectra identification and whitening for the noise in interferometric gravitational wave detectors
- [Torres-Forné (2016) 73 (PRD)] - Denoising of Gravitational Wave Signals Via Dictionary Learning Algorithms
- [Torres et al. (2014) [@2014TorresTotalvariationbasedmethodsgravitational] (PRD)] - Total-Variation-Based Methods for Gravitational Wave Denoising
- [Torres-Forné (2018) [@torres2018total] (PRD)] - Total-variation methods for gravitational-wave denoising: Performance tests on Advanced LIGO data
- [Torres-Forné (2020) 74 (PRD)] - Application of dictionary learning to denoise LIGO’s blip noise transients
- [Shen et al. (2019) [@Shen2019ohi] (IEEE)] - Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders
- [Wei & Huerta (2020) [@2020WeiGravitationalwavedenoising] (PLB)] - Gravitational wave denoising of binary black hole mergers with deep learning
- [Vajente et al. (2020) [@Vajente2019ycy] (PRD)] - Machine-learning nonstationary noise out of gravitational-wave detectors
- [Alimohammadi et al. (2021) 75 (Scientific Reports)] - A Template-Free Approach for Waveform Extraction of Gravitational Wave Events
- [Ormiston et al. (2020) 76 (PRR)] - Noise Reduction in Gravitational-Wave Data via Deep Learning
- [Essick et al. (2020) 77 (Mach. learn.: sci. technol.)] - iDQ: Statistical Inference of Non-gaussian Noise with Auxiliary Degrees of Freedom in Gravitational-wave Detectors
- [Mogushi et al. (2021) [@2021MogushiNNETFIXartificialneural] (Mach. learn.: sci. technol.)] - NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals
- [Chatterjee et al. (2021) [@2021ChatterjeeExtractionBinaryBlack] (PRD)] - Extraction of Binary Black Hole Gravitational Wave Signals from Detector Data Using Deep Learning
- [Mogushi (2021) 78 (2105.10522)] - Reduction of Transient Noise Artifacts in Gravitational-wave Data Using Deep Learning
- [Colgan et al. (2022) 79 (2203.05086)] - Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through Feature Learning
- [Lopez et al. (2022) [@2022LopezSimulatingTransientNoise] (2203.06494)] - Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks
- [Yu & Adhikari (2022) 80 (Front. Artif. Intell.)] - Nonlinear Noise Cleaning in Gravitational-Wave Detectors With Convolutional Neural Networks
- [Lopez et al. (2022) [@2022LopezSimulatingTransientNoisea] (2205.09204)] - Simulating Transient Noise Bursts in LIGO with Gengli
- [Vajente (2022) [@PhysRevD.105.102005] (PRD)] - Data Mining and Machine Learning Improve Gravitational-Wave Detector Sensitivity
- [Bacon et al. (2022) [@2022BaconDenoisinggravitationalwavesignals] (2205.13513)] - Denoising Gravitational-Wave Signals from Binary Black Holes with Dilated Convolutional Autoencoder
- [Kato et al. (2022) 81 (Astron. Comput.)] - Validation of Denoising System Using Non-Harmonic Analysis and Denoising Convolutional Neural Network for Removal of Gaussian Noise from Gravitational Waves Observed by LIGO
- [Ashton (2022) 82 (2209.15547)] - Gaussian Processes for Gravitational-wave Astronomy
- [Murali & Lumley (2022) 83 (2210.01718)] - Detecting and Denoising Gravitational Wave Signals from Binary Black Holes Using Deep Learning
- [Yang et al. (2023) 84 (2305.06735)] - Unsupervised Noise Reductions for Gravitational Reference Sensors or Accelerometers Based on Noise2Noise Method
- [Saleem et al. (2023) [@2023SaleemDemonstrationMachineLearningassisted] (2306.11366)] - Demonstration of Machine Learning-assisted Real-Time Noise Regression in Gravitational Wave Detectors
4. Compact Binary Coalesces (CBC)¶
Waveform Modelling¶
Signal models are needed for matched filtering and parameter estimation. Solutions of the Einstein equations can be obtained with numerical relativity simulations - High computational cost! LIGO and Virgo rely on approximate solutions obtained through phenomenological modelling. Gaussian process regression has been used to produce new waveforms by providing a direct interpolation between numerical simulations. For Example, [Docter et al. (2017) 85 (PRD)]
-
Machine Learning for waveform generation: Use optimal waveform generators, i.e., machine learning models trained with numerical relativity waveforms [Blackman et al. (2017) 86 (PRD); Huerta et al. (2018) 87 (PRD)] (For eccentric black hole mergers [Varma et al. (2019) 88 (PRD); Varma et al. (2019) 89 (PRR)])
-
Pending:
- [Chua (2017) 90 (PhD Thesis)] - Topics in gravitational-wave astronomy: Theoretical studies, source modelling and statistical methods
- [Chua et al. (2019) 91 (PRL)] - Reduced-oruder modeling with artificial neurons for gravitational-wave inference
- [Setyawati et al. (2020) [@2020SetyawatiRegressionmethodswaveform] (CQG)] - Regression Methods in Waveform Modeling: A Comparative Study
- [Tiglio & Villanueva (2019) [@2021TiglioAbInitiobased] (Scientific Reports)] - On Ab Initio-based, Free and Closed-form Expressions for Gravitational Waves
- [Schmidt (2019) 92 (Masters Thesis)] - Gravitational Wave Modelling with Machine Lerning
- [Chen et al. (2020) 93 (2008.03313)] - Observation of Eccentric Binary Black Hole Mergers with Second and Third Generation Gravitational Wave Detector Networks
- [Khan & Green (2020) 94 (PRD)] - Gravitational-wave Surrogate Models Powered by Artificial Neural Networks
- [Schmidt et al. (2020) 95 (PRD)] - Machine Learning Gravitational Waves from Binary Black Hole Mergers
- [Lee et al. (2021) 96 (PRD)] - Deep Learning Model on Gravitational Waveforms in Merging and Ringdown Phases of Binary Black Hole Coalescences
- [Liao & Lin (2021) 97 (PRD)] - Deep Generative Models of Gravitational Waveforms via Conditional Autoencoder
- [Chua et al. (2021) 98 (PRL)] - Rapid Generation of Fully Relativistic Extreme-mass-ratio-inspiral Waveform Templates for LISA Data Analysis
- [Keith et al. (2021) 99 (PRR)] - Orbital Dynamics of Binary Black Hole Systems Can Be Learned from Gravitational Wave Measurements
- [McGinn et al. (2021) 100 (CQG)] - Generalised Gravitational Burst Generation with Generative Adversarial Networks
- [Nousi et al. (2021) 101 (2107.04312)]
- [Barsotti et al. (2021) 102 (CQG)] - Gravitational Wave Surrogates through Automated Machine Learning
- [Khan et al. (2022) 103 (PRD)] - Interpretable AI Forecasting for Numerical Relativity Waveforms of Quasicircular, Spinning, Nonprecessing Binary Black Hole Mergers
- [Coogan et al. (2022) 104 (PRD)] - Efficient Gravitational Wave Template Bank Generation with Differentiable Waveforms
- [Freitas et al. (2022) 105 (2203.01267)] - Generating Gravitational Waveform Libraries of Exotic Compact Binaries with Deep Learning
- [Freitas et al. (2022) 106 (2203.08434)] - Deep Residual Error and Bag-of-Tricks Learning for Gravitational Wave Surrogate Modeling
- [Thomas et al. (2022) 107 (2205.14066)] - Accelerating Multimodal Gravitational Waveforms from Precessing Compact Binaries with Artificial Neural Networks
- [Ferguson (2022) 108 (PRD)] - Optimizing the Placement of Numerical Relativity Simulations Using a Mismatch Predicting Neural Network
- [Tissino et al. (2022) 109 (2210.15684)] - Combining Effective-One-Body Accuracy and Reduced-Order-Quadrature Speed for Binary Neutron Star Merger Parameter Estimation with Machine Learning
- [Pereira & Sturani (2022) 110 (2210.07299)] - Deep Learning Waveform Anomaly Detector for Numerical Relativity Catalogs
- [Katz et al. (2022) 111 (PRD)] - Fast Extreme-Mass-Ratio-Inspiral Waveforms: New Tools for Millihertz Gravitational-Wave Data Analysis
Signal Detection (BBHs)¶
-
Matched filter searches:
- Searches for gravitational wave signals from compact binaries use matched filtering. GW detector noise is non-Stationary and non-Gaussian.
- Discrete template bank is built to cover the mass-spin parameter space for potential sources. Density of the bank is determined by the minimum overlap requirement of 0.97 so only 3% of SNR is lost. Assume spins are aligned to the orbital angular momentum. Do not account for tidal deformability of neutron stars.
- Existing matched filtering searches are close to optimal and quite fast (~1 min latency): Matched filtering is very close to optimal sensitivity; Not all of the parameter space is covered; Non-Gaussian noise is well understood;
- ML searches can help if they are fast and do as well on detector noise artefacts.
-
Machine learning CBC searches:
Binary black holes are easy but binary neutron stars are hard - they are longer in duration and broader in bandwidth; Spin (with precession) and eccentricity expand the parameter space; Point estimate parameter estimation is useless - sorry to be harsh; The background estimation problem - a long standing issue that people feel quite strongly about;
- [George & Huerta (2018) 112 (PRD)] use a system of two deep convolutional neural networks to rapidly detect CBC signals. They use time series as input so that they can find signals too small for image recognition. They find their method significantly outperforms conventional machine learning techniques, achieves similar performance compared to matched-filtering while being several orders of magnitude faster.
- Deep learning for real-time classification and regression of gravitational waves in simulated LIGO noise. [George & Huerta (2018) 112 (PRD)]
- Deep learning for real-time classification and regression of gravitational waves in real advanced LIGO noise. [George & Huerta (2018) 113 (PLB) 114 (1711.07966); George & Huerta (2018) [@George2017vlv] (NiPS Summer School)]
- Deep learning at scale for real-time gravitational wave parameter estimation and tests of general relativity [Shen et al. (2019) 115 (Mach. learn.: sci. technol.)]. First Bayesian Neural Network model at scale to characterize a 4-D signal manifold with 10M+ templates. Trained with over ten million waveforms using 1024 nodes (64 processors/node) on an HPC platform optimized for deep learning researches (Theta at Argonne National Lab). Inference time is 2 milliseconds for each gravitational wave detection using a single GPU.
- [Gabbard et al. (2018) 116 (PRL)] also perform a CBC search with a basic and standard CNN network to learn to classify between noise and signal+noise classes. They use whitened time series of measured gravitational-wave strain as an input. Train and test on simulated binary black hole signals in synthetic Gaussian LIGO noise. They find they can reproduce the sensitivity of a matched filter search. i.e. the CNN approach can achieve the same sensitivity as a matched filtering analysis. Classification of 2-D BBH signals in simulated LIGO noise.
- [Li et al. (2020) 117 (Front. Phys.)] - Some Optimizations on Detecting Gravitational Wave Using Convolutional Neural Network
- [Kapadia et al. (2017) 118 (PRD)] - Classifier for Gravitational-wave Inspiral Signals in Nonideal Single-detector Data
- [Cao et al. (2018) 119 (JHNU)] - Initial study on the application of deep learning to the Gravitational Wave data analysis
- [Fan et al. (2019) 120 (SCI CHINA PHYS MECH)] - Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
- [Luo et al. (2019) 121 (Front. Phys.)] - Extraction of gravitational wave signals with optimized convolutional neural network
- [Lin et al. (2019) 122 (Front. Phys.)] - Binary Neutron Stars Gravitational Wave Detection Based on Wavelet Packet Analysis and Convolutional Neural Networks
- [Wang et al. (2019) 123 (New J. Phys.)] - Identifying Extra High Frequency Gravitational Waves Generated from Oscillons with Cuspy Potentials Using Deep Neural Networks
- [Rebei et al. (2019) 124 (PRD)] - Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers
- [Krastev (2020) 125 (PLB)] - Real-time Detection of Gravitational Waves from Binary Neutron Stars Using Artificial Neural Networks
- [Mytidis et al. (2019) 126 (PRD)] - Sensitivity Study Using Machine Learning Algorithms on Simulated r-mode Gravitational Wave Signals from Newborn Neutron Stars
- [Gebhard et al. (2017) 127 (Workshop)] - Convwave: Searching for gravitational waves with fully convolutional neural nets
- [Gebhard et al. (2019) 128 (PRD)] - Convolutional Neural Networks: A Magic Bullet for Gravitational-wave Detection?
- [Bresten & Jung (2019) 129 (1910.08245)] - Detection of Gravitational Waves Using Topological Data Analysis and Convolutional Neural Network: An Improved Approach
- [Santos et al. (2020) 130 (2003.09995)] - Gravitational Wave Detection and Information Extraction via Neural Networks
- [Corizzo et al. (2020) 131 (Expert Syst. Appl.)] - Scalable Auto-Encoders for Gravitational Waves Detection from Time Series Data
- [Chen et al. (2020) 132 (Sci. China Phys. Mech. Astron.)] - Machine Learning for Nanohertz Gravitational Wave Detection and Parameter Estimation with Pulsar Timing Array
- [Marulanda et al. (2020) 133 (PLB)] - Deep learning Gravitational Wave Detection in the Frequency Domain
- [Wang et al. (2020) 134 (PRD)] - Gravitational-Wave Signal Recognition of LIGO Data by Deep Learning
- [Kim et al. (2020) 135 (PRD)] - Ranking Candidate Signals with Machine Learning in Low-latency Searches for Gravitational Waves from Compact Binary Mergers
- [Schäfer (2019) 136 (Masters Thesis)] - Analysis of Gravitational-Wave Signals from Binary Neutron Star Mergers Using Machine Learning
- [Schäfer et al. (2020) 137 (PRD)] - Detection of Gravitational-wave Signals from Binary Neutron Star Mergers Using Machine Learning
- [Lin & Wu (2020) 138 (PRD)] - Detection of Gravitational Waves Using Bayesian Neural Networks
- [Chauhan (2020) 139 (2007.05889)] - Deep Learning Model to Make Gravitational Wave Detections from Weak Time-series Data
- [Singh et al. (2021) 140 (Mon. Not. Roy. Astron. Soc.)] - Deep Learning for Estimating Parameters of Gravitational Waves
- [Morales et al. (2021) 141 (Sensors)] - Deep Learning for Gravitational-wave Data Analysis: A Resampling White-box Approach
- [Caramete et al. (2020) 142 (2009.06109)] - Characterization of Gravitational Waves Signals Using Neural Networks
- [Nigam et al. (2020) 143 (2009.12168)] - Transient Classification in Low Snr Gravitational Wave Data Using Deep Learning
- [Deighan et al. (2021) [@2021DeighanGeneticalgorithmoptimizedneuralnetworks] (Neural Comput. Appl.)] - Genetic-Algorithm-Optimized Neural Networks for Gravitational Wave Classification
- [Jadhav et al. (2020) 144 (PRD)] - Improving Significance of Binary Black Hole Mergers in Advanced Ligo Data Using Deep Learning : Confirmation of GW151216
- [Wong et al. (2020) 145 (2007.10350)] - Gravitational-wave signal-to-noise interpolation via neural networks
- [Wei et al. (2021) 146 (PLB)] - Deep Learning for Gravitational Wave Forecasting of Neutron Star Mergers
- [Cabero et al. (2020) 147 (ApJ)] - GWSkyNet: A Real-time Classifier for Public Gravitational-wave Candidates
- [Kim et al. (2020) 148 (ApJ)] - Identification of Lensed Gravitational Waves with Deep Learning
- [Wei et al. (2021) 149 (PLB)] - Deep Learning Ensemble for Real-time Gravitational Wave Detection of Spinning Binary Black Hole Mergers
- [Xia et al. (2020) 150 (PRD)] - Improved Deep Learning Techniques in Gravitational-wave Data Analysis
- [Alvares et al. (2020) 151 (CQG)] - Exploring Gravitational-wave Detection and Parameter Inference Using Deep Learning Methods
- [Wang et al. (2019) 123 (New J. Phys.)] - Identifying Extra High Frequency Gravitational Waves Generated from Oscillons with Cuspy Potentials Using Deep Neural Networks
- LIGO & Virgo provide two probabilities in low-latency. [Chatterjee et al. (2020) [@chatterjee2020machine] (ApJ)] The probability that there is a neutron star in the CBC system, P(HasNS). The probability that there exists tidally disrupted matter outside the final coalesced object after the merger, P(HasRemnant). Matched filter searches give point estimates of mass and spin but they have large errors! To solve this a machine learning classification is used. (scikit learn K nearest neighbours, also tried random forest). A training set is created by injecting fake signals into gravitational wave data and performing a search. This then produces a map between true values and matched filter search point estimates which is learnt by the classifier.
- [Wei et al. (2020) 152 (ApJ)] - Deep Learning with Quantized Neural Networks for Gravitational Wave Forecasting of Eccentric Compact Binary Coalescence
- [Menéndez-Vázquez et al. (2020) 153 (PRD)] - Searches for Compact Binary Coalescence Events Using Neural Networks in the LIGO/Virgo Second Observation Period
- [Krastev et al. (2020) 154 (PLB)] - Detection and Parameter Estimation of Gravitational Waves from Binary Neutron-Star Mergers in Real LIGO Data Using Deep Learning
- [Dodia (2021) 155 (2101.00195)] - Detecting Residues of Cosmic Events Using Residual Neural Network
- [Kulkarni et al. (2019) 156 (PRD)] - Random Projections in Gravitational Wave Searches of Compact Binaries (Random projections)
- [Rzeza et al. (2021) 157 (2101.03226)] - Random Projections in Gravitational Wave Searches from Compact Binaries II: Efficient Reconstruction of Detection Statistic within LLOID Framework (Random projections)
- [Zhan et al. (2021) [@2021ZhanResponseConvolutionalNeural] (2103.03557)] - The Response of the Convolutional Neural Network to the Transient Noise in Gravitational Wave Detection
- [Morawski et al. (2021) 158 (Mach. learn.: sci. technol.)] - Anomaly Detection in Gravitational Waves Data Using Convolutional Autoencoders
- [Baltus et al. (2021) 159 (PRD)] - Convolutional Neural Networks for the Detection of the Early Inspiral of a Gravitational-wave Signal
- [Yan et al. (2021) 160 (PRD)] - Generalized Approach to Matched Filtering Using Neural Networks
- [Yu et al. (2021) 161 (PRD)] - Early Warning of Coalescing Neutron-star and Neutron-star-black-hole Binaries from Nonstationary Noise Background Using Neural Networks
- [Fan et al. (2021) 162 (ICPR)] - Improving Gravitational Wave Detection with 2d Convolutional Neural Networks
- [Baltus et al. (2021) 163 (IEEE)] - Detecting the Early Inspiral of a Gravitational-wave Signal with Convolutional Neural Networks
- [Schäfer et al. (2021) 164 (2106.03741)] - Training Strategies for Deep Learning Gravitational-wave Searches
- [Goyal et al. (2021) 165 (PRD)] - Rapid Identification of Strongly Lensed Gravitational-wave Events with Machine Learning
- [Dodia et al. (2021) 166 (2107.03607)] - Specgrav – Detection of Gravitational Waves Using Deep Learning
- [Van Lieshout (2021) 167 (Master Thesis)] - Sparse, Deep Neural Networks for the Early Detection of Gravitational Waves from Binary Neutron Stars
- [Moreno et al. (2021) 168 (Mach. learn.: sci. technol.)] - Source-agnostic Gravitational-wave Detection with Recurrent Autoencoders
- [Schäfer et al. (2021) 169 (PRD)] - From One to Many: A Deep Learning Coincident Gravitational-Wave Search
- [Verma et al. (2021) 170 (2110.01883)] - Employing Deep Learning for Detection of Gravitational Waves from Compact Binary Coalescences
- [Cuoco et al. (2021) 171 (Universe)] - Multimodal Analysis of Gravitational Wave Signals and Gamma-ray Bursts from Binary Neutron Star Mergers
- [Abbott et al. (2021) 172 (ApJ)] - GWSkyNet-Multi: A Machine-learning Multiclass Classifier for LIGO-Virgo Public Alerts
- [Ding et al. (2021) 173 (2111.09465)] - UniMAP: Model-free Detection of Unclassified Noise Transients in LIGO-Virgo Data Using the Temporal Outlier Factor
- [Moreno et al. (2021) 168 (2107.12698)] - Source-agnostic Gravitational-wave Detection with Recurrent Autoencoders
- [Ruan et al. (2021) 174 (PLB)] - Rapid Search for Massive Black Hole Binary Coalescences Using Deep Learning
- [Lopac et al. (2022) 175 (IEEE Access)] - Detection of Non-stationary GW Signals in High Noise from Cohen’s Class of Time-frequency Representations Using Deep Learning
- [Dahal (2022) 176 (2201.04086)] - Application of Common Spatial Patterns in Gravitational Waves Detection
- [Chaurvedi et al. (2022) 177 (Front. Artif. Intell.)] - Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale
- [Zhang et al. (2022) 178 (PRD)] - Detecting Gravitational-waves from Extreme Mass Ratio Inspirals Using Convolutional Neural Networks
- [Safarzadeh et al. (2022) 179 (2202.07399)] - Interpreting a Machine Learning Model for Detecting Gravitational Waves
- [Choudhary et al. (2022) 180 (PRD)] - Deep Learning Network to Distinguish Binary Black Hole Signals from Short-Duration Noise Transients
- [McIsaac & Harry (2022) 181 (2203.03449)] - Using Machine Learning to Auto-Tune Chi-Squared Tests for Gravitational Wave Searches
- [Jiang et al. (2022) 182 (Front. Phys.)] - Identify Real Gravitational Wave Events in the LIGO-Virgo Catalog GWTC-1 and GWTC-2 with Convolutional Neural Network
- [Ma et al. (2022) [@2022MaEnsembleDeepConvolutional] (PRD)] - Ensemble of Deep Convolutional Neural Networks for Real-Time Gravitational Wave Signal Recognition
- [Baltus et al. (2022) 183 (PRD)] - Convolutional Neural Network for Gravitational-Wave Early Alert: Going down in Frequency
- [Kim et al. (2022) 184 (ApJ)] - Deep Learning-Based Search for Microlensing Signature from Binary Black Hole Events in GWTC-1 and -2
- [Verma et al. (2022) 185 (2206.12673)] - Can Convolution Neural Networks Be Used for Detection of Gravitational Waves from Precessing Black Hole Systems?
- [Aveiro et al. (2022) 186 (PRD)] - Identification of Binary Neutron Star Mergers in Gravitational-Wave Data Using Object-Detection Machine Learning Models
- [Andrews et al. (2022) 187 (2207.04749)] - DeepSNR: A Deep Learning Foundation for Offline Gravitational Wave Detection
- [Zhao et al. (2022) 188 (Communications Physics)] - Space-Based Gravitational Wave Signal Detection and Extraction with Deep Neural Network
- [Jingkai Yan et al. (2022) 189 (2207.11583)] - Boosting the Efficiency of Parametric Detection with Hierarchical Neural Networks
- [Sharma et al. (2022) 190 (2208.02545)] - Fishing Massive Black Hole Binaries with THAMES
- [Santos et al. (2022) 191 (Expert Syst. Appl.)] - Gravitational Wave Signal Recognition and Ring-down Time Estimation via Artificial Neural Networks
- [Barone et al. (2022) 192 (2206.06004)] - A Novel Multi-Layer Modular Approach for Real-Time Gravitational-Wave Detection
- [Schäfer et al. (2022) 193 (PRD)] - First Machine Learning Gravitational-Wave Search Mock Data Challenge
- [Baltus (2022) 194 (PhD Thesis)] - A Machine Learning Approach to the Search for Gravitational Waves Emitted by Light Systems
- [Zhang et al. (2022) 195 (Comput. Intell. Neurosci.)] - Gravitational Wave-Signal Recognition Model Based on Fourier Transform and Convolutional Neural Network
- [Badger et al. (2022) 196 (PRL)] - Dictionary Learning: A Novel Approach to Detecting Binary Black Holes in the Presence of Galactic Noise with LISA
- [Verma et al. (2022) [@2022VermaEmployingdeeplearning] (AIP Conference Proceedings)] - Employing Deep Learning for Detection of Gravitational Waves from Compact Binary Coalescences
- [Qiu et al. (2022) 197 (2210.15888)] - Deep Learning Detection and Classification of Gravitational Waves from Neutron Star-Black Hole Mergers
- [Nousi et al. (2023) 198 (PRD)] - Deep Residual Networks for Gravitational Wave Detection
- [Kim (2022) 199 (2211.02655)] Search for Microlensing Signature in Gravitational Waves from Binary Black Hole Events
- [Yan et al. (2022) 200 (Res. Astron. Astrophys)] - Gravitational Wave Detection Based on Squeeze-and-excitation Shrinkage Networks and Multiple Detector Coherent SNR
- [Alhassan et al. (2022) 201 (2211.13789)] - Detection of Einstein Telescope Gravitational Wave Signals from Binary Black Holes Using Deep Learning
- [Jiang & Luo (2022) 202 (ICPR)] - Convolutional Transformer for Fast and Accurate Gravitational Wave Detection
- [Andres-Carcasona et al. (2022) [@2022Andres-CarcasonaSearchesMassAsymmetricCompact] (PRD)] - Searches for Mass-Asymmetric Compact Binary Coalescence Events Using Neural Networks in the LIGO/Virgo Third Observation Period
- [Zhang et al. (2022) [@PhysRevD.106.122002] (PRD)] - Deep Learning Model Based on a Bidirectional Gated Recurrent Unit for the Detection of Gravitational Wave Signals
- [Wang et al. (2023) 203 (2302.00295)] - Self-Supervised Learning for Gravitational Wave Signal Identification
- [Ravichandran et al. (2023) 204 (2302.00666)] - Rapid Identification and Classification of Eccentric Gravitational Wave Inspirals with Machine Learning
- [Shaikh et al. (2022) 205 (IEEE)] - Optimizing Large Gravitational-Wave Classifier through a Custom Cross-System Mirrored Strategy Approach
- [Ma et al. (2023) [@PhysRevD.107.063029] (PRD)] - Artificial Intelligence Model for Gravitational Wave Search Based on the Waveform Envelope
- [Jin et al. (2023) 206 (2305.19003)] - Rapid Identification of Time-Frequency Domain Gravitational Wave Signals from Binary Black Holes Using Deep Learning
- [Jadhav et al. (2023) 207 (2306.11797)] - Towards a Robust and Reliable Deep Learning Approach for Detection of Compact Binary Mergers in Gravitational Wave Data
- [Tian et al. (2023) 208 (2306.15728)] - Physics-Inspired Spatiotemporal-Graph AI Ensemble for Gravitational Wave Detection
- [Pal & Nayak (2023) 209 (2307.03736)] - Swarm-Intelligent Search for Gravitational Waves from Eccentric Binary Mergers
- [Trovato et al. (2023) 210 (2307.09268)] - Neural Network Time-Series Classifiers for Gravitational-Wave Searches in Single-Detector Periods
- [Freitas et al. (2023) 211 (PoS)] - Comparison of Training Methods for Convolutional Neural Network Model for Gravitational-Wave Detection from Neutron Star-Black Hole Binaries
- [George & Huerta (2018) 112 (PRD)] use a system of two deep convolutional neural networks to rapidly detect CBC signals. They use time series as input so that they can find signals too small for image recognition. They find their method significantly outperforms conventional machine learning techniques, achieves similar performance compared to matched-filtering while being several orders of magnitude faster.
Parameter Estimation (PE)¶
Characterized by 15 parameters. Masses, spins, distance, inclination, sky position, polarization. LIGO & Virgo GWTC-1 [Abbott et al. (2019) 212 (PRX)] . Bayes’ Theorem (LAAC tutorial 2019 - Virginia d’Emilio)
-
MCMC and Nested Sampling
- We have two main PE codes LALInference and Bilby. MCMC Random steps are taken in parameter space, according to a proposal distribution, and accepted or rejected according to the Metropolis-Hastings algorithm. Nested sampling can also compute evidences for model selection. [Skilling (2006) 213 (Bayesian Anal.)]
-
Machine Learning Parameter Estimation
- The current “holy grail” of machine learning for GWs.
- BAMBI: blind accelerated multimodal Bayesian inference combines the benefits of nested sampling and artificial neural networks. [Graff et al. (2012) 214 (Mon. Not. Roy. Astron. Soc.)] An artificial neural network learns the likelihood function to increase significantly the speed of the analysis. [Graff (2012) 215 (PhD Thesis)]
- Chua et al. [Chua & Vallisneri (2020) 216 (PRL)] produce Bayesian posteriors using neural networks.
- Gabbard et al. [Gabbard et al. (2019) [@2021GabbardBayesianParameterEstimation] (Nature Physics)] use a conditional variational autoencoder pre-trained on binary black hole signals. We use a variation inference approach to produce samples from the posterior. It does NOT need to be trained on precomputed posteriors. It is ~6 orders of magnitude faster than existing sampling techniques. For Chris Messenger, it seems completely obvious that all data analysis will be ML in 5-10 years.
- [Chatterjee et al. (2020) [@chatterjee2020machine] (ApJ)] - A Machine Learning-based Source Property Inference for Compact Binary Mergers
- [Fan et al. (2019) 120 (SCI CHINA PHYS MECH)] - Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
- [Green et al. (2020) [@2020GreenGravitationalwaveParameter] (PRD)] - Gravitational-Wave Parameter Estimation with Autoregressive Neural Network Flows
- [Carrillo et al. (2016) 217 (GRG)] - Parameter estimates in binary black hole collisions using neural networks
- [Carrillo et al. (2018) 218 (INT J MOD PHYS D)] - One parameter binary black hole inverse problem using a sparse training set
- [Chatterjee et al. (2019) 219 (PRD)] - Using deep learning to localize gravitational wave sources
- [Yamamoto & Tanaka (2020) 220 (2002.12095)] - Use of conditional variational auto encoder to analyze ringdown gravitational waves
- [Haegel & Husa (2020) 221 (CQG)] - Predicting the properties of black-hole merger remnants with deep neural networks
- [Belgacem et al. (2020) 222 (PRD)] - Gaussian processes reconstruction of modified gravitational wave propagation
- [Chen et al. (2020) 132 (Sci. China Phys. Mech. Astron.)] - Machine Learning for Nanohertz Gravitational Wave Detection and Parameter Estimation with Pulsar Timing Array
- [Khan et al. (2020) 223 (PLB)] - Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers
- [Nakano et al. (2019) 224 (PRD)] - Comparison of Various Methods to Extract Ringdown Frequency from Gravitational Wave Data
- [Engels et al. (2014) 225 (PRD)] - Multivariate regression analysis of gravitational waves from rotating core collapse
- [Green & Gair (2021) [@2021GreenCompleteParameterInference] (Mach. learn.: sci. technol.)] - Complete Parameter Inference for GW150914 Using Deep Learning
- [Vivanco et al. (2020) 226 (Mon. Not. Roy. Astron. Soc.)] - A Scalable Random Forest Regressor for Combining Neutron-Star Equation of State Measurements: A Case Study with GW170817 and GW190425
- [Delaunoy (2020) 227 (Master Thesis)] - Lightning Gravitational Wave Parameter Inference through Neural Amortization
- [Pacilio (2019) 228 (Master Thesis)] - Multioutput Regression of Noisy Time Series Using Convolutional Neural Networks with Applications to Gravitational Waves
- [Delaunoy et al. (2020) 229 (2010.12931)] - Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization
- [Marulanda et al. (2020) 133 (PLB)] - Deep Learning Merger Masses Estimation from Gravitational Waves Signals in the Frequency Domain
- [Jeffrey & Wandelt (2020) 230 (NeurIPS)] - Solving High-dimensional Parameter Inference: Marginal Posterior Densities & Moment Networks
- [Alvares et al. (2020) 151 (CQG)] - Exploring Gravitational-wave Detection and Parameter Inference Using Deep Learning Methods
- [Wang et al. (2019) 123 (New J. Phys.)] - Identifying Extra High Frequency Gravitational Waves Generated from Oscillons with Cuspy Potentials Using Deep Neural Networks
- [Bhagwat & Pacilio (2021) [@2021BhagwatMergerringdownConsistency] (PRD)] - Merger-Ringdown Consistency: A New Test of Strong Gravity Using Deep Learning
- [Williams et al. (2021) 231 (PRD)] - Nested Sampling with Normalising Flows for Gravitational-wave Inference
- [D’Emilio et al. (2021) 232 (Mon. Not. Roy. Astron. Soc.)] - Density Estimation with Gaussian Processes for Gravitational-wave Posteriors
- [Dax et al. (2021) [@2021DaxRealtimeGravitational] (PRL)] - Real-time Gravitational-wave Science with Neural Posterior Estimation
- [Kuo & Lin (2021) 233 (2107.10730)] - Conditional Noise Deep Learning for Parameter Estimation of Gravitational Wave Events
- [Gunny et al. (2021) 234 (2108.12430)] - Hardware-accelerated Inference for Real-time Gravitational-wave Astronomy
- [Rozet & Louppe (2021) 235 (2110.00449)] - Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference就是
- [Guedes et al. (2021) 236 (SBIC)] - Mass Determination of Cosmological Objects from Gravitational Wave Data Using Neural Networks
- [Kolmus et al. (2021) [@2021KolmusSwiftskylocalization] (2111.00833)] - Swift Sky Localization of Gravitational Waves Using Deep Learning Seeded Importance Sampling
- [Dax et al. (2021) [@2021DaxGroupEquivariantNeural] (2111.13139)] - Group Equivariant Neural Posterior Estimation
- [Khan et al. (2021) 237 (PLB)] - AI and Extreme Scale Computing to Learn and Infer the Physics of Higher Order Gravitational Wave Modes of Quasi-Circular, Spinning, Non-Precessing Black Hole Mergers
- [Wang et al. (2022) 238 (BDMA)] - Sampling with Prior Knowledge for High-dimensional Gravitational Wave Data Analysis
- [McLeod et al. (2022) 239 (2201.11126)] - Rapid Mass Parameter Estimation of Binary Black Hole Coalescences Using Deep Learning
- [Sasaoka et al. (2022) 240 (PRD)] - Localization of Gravitational Waves Using Machine Learning
- [Guo et al. (2022) 241 (2203.06969)] - Mimicking Mergers: Mistaking Black Hole Captures as Mergers
- [Karamanis et al. (2022) 242 (2207.05652)] - Accelerating Astronomical and Cosmological Inference with Preconditioned Monte Carlo
- [Chatterjee et al. (2022) 243 (2207.14522)] - Rapid Localization of Gravitational Wave Sources from Compact Binary Coalescences Using Deep Learning
- [Tsatsev (2022) 244 (Masters Thesis)] - Parameter Inference of Gravitational Waves Using Inverse Autoregressive Spline Flow
- [Bayley et al. (2022) 245 (PRD)] - Rapid Parameter Estimation for an All-Sky Continuous Gravitational Wave Search Using Conditional Varitational Auto-Encoders
- [Dax et al. (2022) [@2022DaxNeuralImportanceSampling] (PRL)] - Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
- [Wofford et al. (2022) 246 (PRD)] - Improving Performance for Gravitational-Wave Parameter Inference with an Efficient and Highly-Parallelized Algorithm
- [Wildberger et al. (2022) [@2022WildbergerAdaptingnoisedistribution] (PRD)] - Adapting to Noise Distribution Shifts in Flow-Based Gravitational-Wave Inference
- [Langenorff et al. (2022) 247 (PRL)] - Normalizing Flows as an Avenue to Studying Overlapping Gravitational Wave Signals
- [Chatterjee et al. (2023) 248 (2301.03558)] - Pre-Merger Sky Localization of Gravitational Waves from Binary Neutron Star Mergers Using Deep Learning
- [Wong et al. (2023) 249 (2302.05333)] - Fast Gravitational Wave Parameter Estimation without Compromises
- [Williams et al. (2023) 250 (Mach. learn.: sci. technol.)] - Importance Nested Sampling with Normalising Flows
- [Bhardwaj et al. (2023) [@2023BhardwajPeregrineSequentialsimulationbased] (PRD)] - Sequential simulation-based inference for gravitational wave signals
- [Crisostomi et al. (2023) [@2023CrisostomiNeuralPosteriorEstimationa] (PRD)] - Neural Posterior Estimation with Guaranteed Exact Coverage: The Ringdown of GW150914
- [Dax et al. (2023) [@2023DaxFlowMatchingScalable] (2305.17161)] - Flow Matching for Scalable Simulation-Based Inference
- [Liu et al. (2023) 251 (2307.07233)] - Improving the Scalability of Gaussian-process Error Marginalization in Gravitational-Wave Inference
- [Soma et al. (2023) 252 (2306.17488)] - Mass and Tidal Parameter Extraction from Gravitational Waves of Binary Neutron Stars Mergers Using Deep Learning
- [Sun et al. (2023) 253 (2307.16437)] - Deep Learning Forecasts of Cosmic Acceleration Parameters from DECi-hertz Interferometer Gravitational-wave Observatory
- [Du et al. (2023) 254 (2308.05510)] - Advancing Space-Based Gravitational Wave Astronomy: Rapid Detection and Parameter Estimation Using Normalizing Flows
- [Whittaker et al. (2022) [@PhysRevD.105.124021] (PRD)] - Using Machine Learning to Parametrize Postmerger Signals from Binary Neutron Stars
Population Studies¶
- [Vinciguerra et al. (2017) 255 (CQG)] - Enhancing the significance of gravitational wave bursts through signal classification
- Now that we have started to detect a population of black hole signals we can try to do population studies to try and understand signals formation mechanisms. Population properties paper from O1+02 [Abbott et al. (2019) 256 (ApJ)] . Uses phenomenological models (like power laws) combined with Bayesian hierarchical modelling. Bayesian hierarchical modelling involves some assumptions of populations mass and spin distributions. Does not scale well for high dimensional models and a large number of GW detections.
- We can use unmodelling clustering! In [Powell et al. (2019) 257 (Mon. Not. Roy. Astron. Soc.)] we apply unmodelled clustering to masses and spins. Two of the populations have identical mass distributions and different spin. This is difficult because spin is poorly measured. Determine the number of populations and the number of CBC signals in each population.
- (How do I try it myself?) The Gravitational Wave Open Science Center has the data, parameter estimates, and matched filtering tutorials that you can download. You can get code to produce synthetic parameter estimates for compact binaries.
- [Varma et al. (2019) 258 (PRL)] - High-Accuracy Mass, Spin, and Recoil Predictions of Generic Black-Hole Merger Remnants
- [Deligiannidis et al. (2019) 259 (ICAI)] - Case Study: Skymap Data Analysis
- [Wong & Gerosa (2019) 260 (PRD)] - Machine-learning interpolation of population-synthesis simulations to interpret gravitational-wave observations: A case study
- [Wong et al. (2020) 261 (PRD)] - Gravitational-wave population inference with deep flow-based generative network
- [Fasano et al. (2020) 262 (PRD)] - Distinguishing Double Neutron Star from Neutron Star-black Hole Binary Populations with Gravitational Wave Observations
- [Tiwari (2020) 263 (CQG)] - VAMANA: Modeling Binary Black Hole Population with Minimal Assumptions
- [Vernardos et al. (2020) 264 (Mon. Not. Roy. Astron. Soc.)] - Quantifying the Structure of Strong Gravitational Lens Potentials with Uncertainty-aware Deep Neural Networks
- [Wong et al. (2020) 265 (PRD)] - Constraining the Primordial Black Hole Scenario with Bayesian Inference and Machine Learning: The GWTC-2 Gravitational Wave Catalog
- [Arjona et al. (2021) 266 (PRD)] - Machine Learning Forecasts of the Cosmic Distance Duality Relation with Strongly Lensed Gravitational Wave Events
- [Gerosa et al. (2020) 267 (PRD)] - Gravitational-wave Selection Effects Using Neural-network Classifiers
- [Talbot & Thrane (2020) 268 (ApJ)] - Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning
- [Álvares et al. (2021) 269 (IEEE)] - Gravitational-Wave Parameter Inference Using Deep Learning
- [Cheung et al. (2021) 270 (2112.06707)] - Testing the Robustness of Simulation-based Gravitational-wave Population Inference
- [Wong et al .(2020) 271 (PRD)] - Joint Constraints on the Field-cluster Mixing Fraction, Common Envelope Efficiency, and Globular Cluster Radii from a Population of Binary Hole Mergers Via Deep Learning
- [Mould et al. (2022) 272 (2203.03651)] - Deep Learning and Bayesian Inference of Gravitational-Wave Populations: Hierarchical Black-Hole Mergers
- [Strub et al. (2022) 273 (2204.04467)] - Bayesian Parameter-Estimation of Galactic Binaries in LISA Data with Gaussian Process Regression
- [Nakama (2022) 274 (PRD)] - Machine Learning Primordial Black Hole Formation
- [Wong et al. (2022) 275 (2207.12409)] - Automated Discovery of Interpretable Gravitational-Wave Population Models
- [Mohite (2022) 276 (PhD Thesis)] - Data-Driven Population Inference from Gravitational-Wave Sources and Electromagnetic Counterparts
- [Ruhe et al. (2022) 277 (2211.09008)] - Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study
- [Edelman et al. (2022) 278 (2210.12834)] - Cover Your Basis: Comprehensive Data-Driven Characterization of the Binary Black Hole Population
- [Ray et al. (2023) 279 (2304.08046)] - Non-Parametric Inference of the Population of Compact Binaries from Gravitational Wave Observations Using Binned Gaussian Processes
5. Continuous Wave Search¶
- Existing challenges and signal characteristics: Vast parameter space, The parameter space is incredibly large; Likely very weak signals, The signal is incredibly weak - orders of magnitude lower than the noise amplitude; Leading to traditional searches optimised at fixed computational cost - Generally slow, The dataset is (quite) large, 1year X 1kHz =~10 GB; In the era of open data the LVC and competitors are keen to analyse the data very quickly; Narrow band, However, since we have been limited until now by computational expense - with ML this could no longer be a limit, and hence sensitivity can really improve
- [Morawski et al. (2020) 280 (Mach. learn.: sci. technol.)] - Convolutional Neural Network Classifier for the Output of the Time-domain F-statistic All-sky Search for Continuous Gravitational Waves
- [Dreissigacker et al. (2019) 281 (PRD)] (Modelled searches) Based on the success of CNNs for compact binary searches; The task is significantly more difficult here; Fair comparison with fully coherent searches over a broad parameter space; The ML approach is reasonably competitive for the simplest of the cases studied; For 10^6 sec observations at 1kHz perform significantly worse than matched filtering
- [Dreissigacker & Prix (2020) 282 (PRD)] - Deep-learning continuous gravitational waves: Multiple detectors and realistic noise
- [Bayley et al. (2019) 283 (PRD)] (Unmodelled searches) A very weakly modelled search for weak psuedo-sinusoidal continuous signals; Uses the Viterbi algorithm to efficiently find the maximum sum of power/ statistic across a time-frequency plane (hence SOAP); Requires no templates and runs on “raw” GW data; Is exceptionally good at finding detector line features (also annoying); Extension work applies a CNN to the output for better signal vs line discrimination;
- [Miller et al. (2019) 284 (PRD)] - How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search?
- [Miller (2019) 285 (PhD Thesis)] - Using Machine Learning and the Hough Transform to Search for Gravitational Waves Due to R-mode Emission by Isolated Neutron Stars
- [Schafer (2019) 136 (Masters Thesis)] - Analysis of Gravitational-Wave Signals from Binary Neutron Star Mergers Using Machine Learning
- [Beheshtipour & Papa (2020) 286 (PRD)] - Deep Learning for Clustering of Continuous Gravitational Wave Candidates
- [Middleton et al. (2020) 287 (PRD)] - Search for Gravitational Waves from Five Low Mass X-ray Binaries in the Second Advanced Ligo Observing Run with an Improved Hidden Markov Model
- [Bayley et al. (2020) 288 (PRD)] - Robust Machine Learning Algorithm to Search for Continuous Gravitational Waves
- [Bayley (2020) 289 (PhD Thesis)] - Non-parametric and Machine Learning Techniques for Continuous Gravitational Wave Searches
- [Jones & Sun (2020) 290 (2007.08732)] - Search for Continuous Gravitational Waves from Fomalhaut B in the Second Advanced Ligo Observing Run with a Hidden Markov Model
- [Suvorova et al. (2016) 291 (PRD)] - Hidden Markov Model Tracking of Continuous Gravitational Waves from a Neutron Star with Wandering Spin
- [Suvorova et al. (2017) 292 (PRD)] - Hidden Markov Model Tracking of Continuous Gravitational Waves from a Binary Neutron Star with Wandering Spin. II. Binary Orbital Phase Tracking
- [Sun & Melatos (2019)] 293 (PRD) - Application of Hidden Markov Model Tracking to the Search for Long-Duration Transient Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817
- [Sun et al. (2018) 294 (PRD)] - Hidden Markov Model Tracking of Continuous Gravitational Waves from Young Supernova Remnants
- [Abbott et al. (2019) 295 (PRD)] - Search for Gravitational Waves from Scorpius X-1 in the Second Advanced LIGO Observing Run with an Improved Hidden Markov Model
- [C. Dreißigacker (2020) 296 (PhD Thesis)] - Searches for Continuous Gravitational Waves : Sensitivity Estimation and Deep Learning As a Novel Search Method
- [Morawski et al. (2020) 297 (Proceedings)] - achine Learning Classification of Continuous Gravitational-wave Signal Candidates
- [Yamamoto & Tanaka (2020) 298 (PRD)] - Use of Excess Power Method and Convolutional Neural Network in All-sky Search for Continuous Gravitational Waves
- [Behechtipour & Papa 299 (PRD)] - Deep Learning for Clustering of Continuous Gravitational Wave Candidates II: Identification of low-SNR Candidates
- [Beniwal et al. (2021) 300 (PRD)] - Search for Continuous Gravitational Waves from Ten H.E.S.S. Sources Using a Hidden Markov Model
- [La Rosa et al. (2021) 301 (Universe)] - Continuous Gravitational-Wave Data Analysis with General Purpose Computing on Graphic Processing Units
- [Melatos et al. (2021) 302 (PRD)] - Hidden Markov Model Tracking of Continuous Gravitational Waves from a Neutron Star with Wandering Spin. III. Rotational Phase Tracking
- [Songsheng et al. (2021) 303 (ApJ)] - Search for Continuous Gravitational Wave Signals in Pulsar Timing Residuals: A New Scalable Approach with Diffusive Nested Sampling
- [Rocha-Solache et al. (2022) [@2022Rocha-SolacheTimedomaindeeplearning] (2201.06672)] - Time-Domain Deep Learning Filtering of Structured Atmospheric Noise for Ground-Based Millimeter Astronomy
- [Yamamoto et al. (2022) 304 (PRD)] - Assessing the Impact of Non-Gaussian Noise on Convolutional Neural Networks That Search for Continuous Gravitational Waves
- [Vargas & Melatos (2022) 305 (2208.03932)] - Search for Continuous Gravitational Waves from PSR J0437-4715 with a Hidden Markov Model in O3 LIGO Data
- [Jochi & Prix (2023) 306 (2305.01057)] - A Novel Neural-Network Architecture for Continuous Gravitational Waves
- [Duraisamy et al. (2023) 307 (IEEE)] - Optimized Detection of Continuous Gravitational-Wave Signals Using Convolutional Neural Network
- [Pintelas et al. (2023) 308 (Springer Nature Switzerland)] - A Deep Learning-Based Methodology for Detecting and Visualizing Continuous Gravitational Waves
- [Dominguez et al. (2023) [@Dominguez:2023W/] (PoS)] - Convolutional Neural Network for Continuous Gravitational Waves Detection
6. Gravitational Wave Bursts¶
A burst is a gravitational wave signal where the waveform morphology is partially or completely unknown. The source could be an unknown unknown, a supernova, cosmic string, fast radio burst, compact binaries and others. The main burst search is called coherent Wave Burst (cWB).
-
Coherent Wave Burst (cWB) Website
cWB relies upon the excess coherent power in a network of detectors. The data is transformed into time-frequency domain and the clusters of time-frequency pixels above certain energy threshold are identified for each detector. Time frequency map of the single detectors is then combined using the maximisation of the likelihood over all possible sky locations and the events are then ranked according to this likelihood. We can also inform our un-modelled search about the morphology of the expected signal. cWB produces reconstructions of gravitational wave signals. It can detect CBC signals as well as bursts.
- [Drago et al. (2020) 309 (2006.12604)] - Coherent Waveburst, a Pipeline for Unmodeled Gravitational-wave Data Analysis
- [Mishra et al. (2021) 310 (PRD)] - Optimization of Model Independent Gravitational Wave Search Using Machine Learning
- [Mishra et al. (2022) 311 (2201.01495)] - Search for Binary Black Hole Mergers in the Third Observing Run of Advanced LIGO-Virgo Using Coherent Waveburst Enhanced with Machine Learning
- [Szczepańczyk et al. (2023) [@PhysRevD.107.062002] (PRD)] - Search for Gravitational-Wave Bursts in the Third Advanced LIGO-Virgo Run with Coherent WaveBurst Enhanced by Machine Learning -
BayesWave
BayesWave is another standard burst tool. [Cornish & Littenberg (2015) 312 (CQG)] Models signals as a variable number of sine-Gaussian wavelets with power coherent across detectors. It produces unmodelled waveform reconstructions and can remove glitches that occur during signals. [Pankow et al. (2018) 313 (PRD)]
-
Supernova Search
Some burst searches are for targeted sources like supernovae. There is not enough supernova waveforms to match filter search but some supernova waveform features are known. The known features from supernova simulations can be incorporated into supernova searches using machine learning.
- [Astone et al. (2018) 42 (PRD)] enhance the efficiency of cWB using a neural network. The network is trained on phenomenological waveforms that represent the g-mode emission in supernova waveforms. They use cWB to prepare images of the data. They use colours to determine which detectors find the signal. They find their method increases the sensitivity of traditional cWB.
- [Iess et al. (2020) 314 (Mach. learn.: sci. technol.)] have a different approach that does not involve cWB. They use a trigger generator called WDF to find excess power in the detector. Then they do a neural network classification to decide if the trigger is a signal or noise. They train directly on supernova waveforms. They use both time series and images of data. They obtain high accuracies with both methods and include glitches.
- [Chan et al. (2019) 315 (PRD)] also train directly on supernova waveforms. They use only the time series waveforms from different explosion mechanisms.
- [Cavaglia et al. (2020) [@Cavaglia2020qzp] (Mach. learn.: sci. technol.)] - Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach
- [Stachie et al. (2020) 316 (Mon. Not. Roy. Astron. Soc.)] - Using Machine Learning for Transient Classification in Searches for Gravitational-wave Counterparts
- [Marianer et al. (2020) 49 (Mon. Not. Roy. Astron. Soc.)] - A Semisupervised Machine Learning Search for Never-Seen Gravitational-Wave Sources
- [Millhouse et al. (2020) 317 (PRD)] - Search for Gravitational Waves from 12 Young Supernova Remnants with a Hidden Markov Model in Advanced LIGO’s Second Observing Run
- [L'opez et al. (2021) 318 (PRD)] - Deep Learning for Core-collapse Supernova Detection
- [L'operz et al. (2021) 319 (IEEE)] - Deep Learning Algorithms for Gravitational Waves Core-collapse Supernova Detection
- [Antelis et al. (2021) 320 (PRD)] - Using Supervised Learning Algorithms As a Follow-up Method in the Search of Gravitational Waves from Core-collapse Supernovae
- [Lagos et al. (2023) 321 (2304.11498)] - Characterizing the Gravitational Wave Temporal Evolution of the Gmode Fundamental Resonant Frequency for a Core Collapse Supernova: A Neural Network Approach
-
Burst analysis
Jordan McGinn. Thesis: “Generalised gravitational burst searches with Generative Adversarial Networks”. Examined the use of Generative Adversarial Networks to generate and interpret large quantities of time-series data. The method was successful in classifying signal data buried within external noise.
Uses Generative Adversarial network (GAN) to learn how to make standard burst waveforms. Generation stage has the possibility to make signals spanning all training classes. Discriminator stage has the potential to be a general transient detection tool
- [Rover et al. (2009) 322 (PRD)] - Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce
- [Kovačević et al. (2019) [#Kovacevic2019wpy] (Mon. Not. Roy. Astron. Soc.)] - Optimizing neural network techniques in classifying Fermi-LAT gamma-ray sources
- [Kim et al. (2015) 323 (CQG)] - Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts
- [Gayathri et al. (2020) 324 (PRD)] - Enhancing the Sensitivity of Transient Gravitational Wave Searches with Gaussian Mixture Models
- [L'opez et al. (2021) 318 (PRD)] - Deep Learning for Core-collapse Supernova Detection
- [Skliris et al. (2020) [@2020SklirisRealtimeDetection] (2009.14611)] - Real-time Detection of Unmodeled Gravitational-wave Transients Using Convolutional Neural Networks
- [Lopez et al. (2021) 325 (PRD)] - Utilizing Gaussian Mixture Models in All-Sky Searches for Short-Duration Gravitational Wave Bursts
- [Boudart & Fays (2022) 326 (PRD)] - A Machine Learning Algorithm for Minute-Long Burst Searches
- [Mitra et al. (2022) 327 (Mon. Not. Roy. Astron. Soc.)] - Exploring Supernova Gravitational Waves with Machine Learning
- [Szczepańczyk et al. (2022) 328 (2210.01754)] - All-Sky Search for Gravitational-Wave Bursts in the Third Advanced LIGO-Virgo Run with Coherent WaveBurst Enhanced by Machine Learning
- [Iess et al. (2022) 329 (A&A)] - LSTM and CNN Application for Core-Collapse Supernova Search in Gravitational Wave Real Data
- [Boudart & Fays (2022) 330 (IEEE)] - ALBUS: A Machine Learning Algorithm for Gravitational Wave Burst Searches
- [Modafferi et al. (2022) 331 (2303.16720)] - Convolutional Neural Network Search for Long-Duration Transient Gravitational Waves from Glitching Pulsars
- [Sasaoka et al. (2023) [@Sasaoka:20232F] (PoS)] - Deep Learning for Detecting Gravitational Waves from Compact Binary Coalescences and Its Visualization by Grad-CAM
- [Meijer et al. (2023) 332 (2308.12323)] - Gravitational-Wave Searches for Cosmic String Cusps in Einstein Telescope Data Using Deep Learning
-
Single Detector Search
30% of gravitational wave data is collected when only 1 detector is in observing mode. Can’t do time slides to measure the background if there is only 1 detector.
- [Cavaglia et al. (2020) [@Cavaglia2020qzp] (Mach. learn.: sci. technol.)] use machine learning combined with cWB to perform a single detector search for supernovae. They train a genetic programming algorithm on the output parameters of cWB.
- (How can I try it myself?) You can download some supernova gravitational wave signals here . You can get KarooGP here . You can get Coherent WaveBurst here.
7. Stochastic Gravitational Wave Background¶
- [Utina et al. (2021) 333 (IEEE)] - Deep Learning Searches for Gravitational Wave Stochastic Backgrounds
- [Yamamoto et al. (2022) 334 (PRD)] - Deep Learning for Intermittent Gravitational Wave Signals
8. GW / Cosmology¶
- [Khan et al. (2019) 335 (PLB)] From the citizen science revolution using the Sloan Digital Sky Survey… … to large scale discovery using unlabeled images in the Dark Energy Survey using deep learning. 10k+ raw, unlabeled galaxy images from DES clustered according to morphology using RGB filters; Scalable approach to curate datasets, and to construct large-scale galaxy catalogs; Deep transfer learning combined with distributed training for cosmology; Training is completed within 8 minutes achieving state-of-the-art classification accuracy;
- Real-time detection and characterization of binary black hole mergers + Classification and regression of galaxies across redshift in DES/LSST-type surveys => Hubble constant measurements with probabilistic neural network models [Wei et al. (2020) 336 (Mon. Not. Roy. Astron. Soc.)]. Star cluster classification has been predominantly done by human experts; We have designed neural network models that outperform, for the first time, human performance for star cluster classification; Worldwide collaboration of experts in deep learning, astronomy, software and data.
- [Alexander et al. (2020) 337 (ApJ)] - Deep Learning the Morphology of Dark Matter Substructure
- [Gupta & Reichardt (2020) 338 (ApJ)] - Mass Estimation of Galaxy Clusters with Deep Learning I: Sunyaev-Zel’dovich Effect
- [Sadr & Farsian (2020) 339 (JCAP)] - Inpainting via Generative Adversarial Networks for CMB data analysis
- [Philip et al. (2002) 340 (Astron. Astrophys.)] - A difference boosting neural network for automated star-galaxy classification
- [Philip et al. (2012) 341 (1211.3607)] - Classification by Boosting Differences in Input Vectors: An application to datasets from Astronomy
- [Sadeh (2020) 342 (ApJ)] - Data-driven Detection of Multimessenger Transients
- [Wang et al (2020) 343 (ApJS)] - ECoPANN: A Framework for Estimating Cosmological Parameters using Artificial Neural Networks
- 他们这个是当做回归问题在做,和 Huerta 他们的基本逻辑其实一样。至于6 个目标参数的估计,是通过给定 input 数据在相应参数区间上采样后,直接给出后验样本参数估计的(频率学派~)。并不是对某单个数据给出的参数估计(贝叶斯学派)。
- 实现的是对应观测数据集的宇宙学参数估计
- [Xu et al. (2020) 344 (PASP)] - GWOPS: A Vo-technology Driven Tool to Search for the Electromagnetic Counterpart of Gravitational Wave Event
- [Milosevic et al. (2020) 345 (A&A)] - Bayesian Decomposition of the Galactic Multi-frequency Sky Using Probabilistic Autoencoders
- [Hortua et al. (2019) 346 (PRD)] - Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks
- [Matilla et al. (2020) 347 (PRD)] - Interpreting Deep Learning Models for Weak Lensing
- [Guzman & Meyers (2021) 348 (PRD))] - Reconstructing Patchy Reionization with Deep Learning
- [Boilla et al. (2021) 349 (2102.06149)] - Reconstruction of the Dark Sectors’ Interaction: A Model-independent Inference and Forecast from GW Standard Sirens
- [Ren et al. (2021) 350 (2103.01260)] - Data-driven Reconstruction of the Late-time Cosmic Acceleration with F(t) Gravity
- [Yang (2021) 351 (2103.01923)] - Gravitational-wave Detector Networks: Standard Sirens on Cosmology and Modified Gravity Theory
- [Han et al. (2021) 352 (ApJ)] - Bayesian Nonparametric Inference of Neutron Star Equation of State Via Neural Network
- [Edwards (2020) 353 (PRD)] - Classifying the Equation of State from Rotating Core Collapse Gravitational Waves with Deep Learning
- [Natarajan et al. (2021) 354 (2103.13932)] - Quasarnet: A New Research Platform for the Data-driven Investigation of Black Holes
- [Elizalde et al. (2021) 355 (2104.01077)] - An Approach to Cold Dark Matter Deviation and the H_{0} Tension Problem by Using Machine Learning
- [Gómez-Vargas et al. (2021) 356 (2104.00595)] - Cosmological Reconstructions with Artificial Neural Networks
- [Tilaver et al. (2021) 357 (Comput. Phys. Commun)] - Deep Learning Approach to Hubble Parameter
- [Gerardi et al. (2021) 358 (PRD)] - Unbiased Likelihood-free Inference of the Hubble Constant from Light Standard Sirens
- [Velasquez-Toribio et al. (2021) 359 (2104.07356)] - Constraints on Cosmographic Functions Using Gaussian Processes
- [Cañas-Herrera et al. (2021) 360 (ApJ)] - Learning How to Surf: Reconstructing the Propagation and Origin of Gravitational Waves with Gaussian Processes
- [Rouhiainen et al. (2021) 361 (2105.12024)] - Normalizing Flows for Random Fields in Cosmology
- [Mancarella et al. (2022) 362 (PRD)] - Seeking New Physics in Cosmology with Bayesian Neural Networks: Dark Energy and Modified Gravity
- [Chapman-Bird et al. (2022) [@2022Chapman-BirdRapiddeterminationLISA] (2212.06166)] - Rapid Determination of LISA Sensitivity to Extreme Mass Ratio Inspirals with Machine Learning
- [Gagnon-Hartman et al. (2023) [@2023Gagnon-HartmanDebiasingStandardSiren] (2301.05241)] Debiasing Standard Siren Inference of the Hubble Constant with Marginal Neural Ratio Estimation
- [Shah et al. (2023) 363 (2301.12708)] - A Thorough Investigation of the Prospects of eLISA in Addressing the Hubble Tension: Fisher Forecast, MCMC and {{Machine Learning
- [Ashton (2023) 364 (Mon. Not. Roy. Astron. Soc.)] - Gaussian Processes for Glitch-robust Gravitational-wave Astronomy
- [Callister & Farr (2023) 365 (2302.07289)] - A Parameter-Free Tour of the Binary Black Hole Population
- [Riley & Mandel (2023) 366 (2303.00508)] - Probing Cosmic History with Merging Compact Binaries
- [Mukherjee et al. (2023) 367 (2303.05169)] - Reconstructing the Hubble Parameter with Future Gravitational Wave Missions Using Machine Learning
- [Alvey et al. (2023) 368 (2304.02032)] - Albatross: A Scalable Simulation-Based Inference Pipeline for Analysing Stellar Streams in the Milky Way
- [Whittle et al. (2023) 369 (2305.13780)] - Machine Learning for Quantum-Enhanced Gravitational-Wave Observatories
- [Sravan et al. (2023) 370 (2307.09213)] - Machine-Directed Gravitational-Wave Counterpart Discovery
9. Physics related¶
Some selected interesting works:
- [Funai et al. (2018) 371 (PRR)] - Thermodynamics and Feature Extraction by Machine Learning
- [Breen et al. (2019) 372 (Mon. Not. Roy. Astron. Soc.)] - Newton Vs the Machine: Solving the Chaotic Three-body Problem Using Deep Neural Networks | 深度学习求解「三体」问题,计算速度提高一亿倍 | 牛顿解决不了的问题,AI或许能搞定:用神经网络解决三体问题
- [Greydanus et al. (2019) 373 (NeurIPS)] - Hamiltonian Neural Networks
- [Cohen et al. (2019) 374(PRR)] - Learning Curves for Overparametrized Deep Neural Networks: A Field Theory Perspective
- [Rosofsky & Huerta (2020) 375 (PRD)] - Artificial Neural Network Subgrid Models of 2D Compressible Magnetohydrodynamic Turbulence
- [Tamayo et al. (2020) 376 (PNAS)] - Predicting the Long-term Stability of Compact Multiplanet Systems
Sagan学者Dan Tamayo介绍了他们在PNAS上发表的一篇利用机器学习技术预测多行星系统的动力学稳定性。(Informative comments from 光头怪博士)
- [Green & Ting (2020) 377 (2011.04673)] - Deep Potential: Recovering the Gravitational Potential from a Snapshot of Phase Space
- [Liu & Tegmark (2021) 378 (PRL)] - Machine Learning Conservation Laws from Trajectories
- [Lucie-Smith et al. (2020) 379 (2011.10577)] - Deep Learning Insights into Cosmological Structure Formation
- [Yip et al. (2020) 380 (ApJ)] - Peeking inside the Black Box: Interpreting Deep Learning Models for Exoplanet Atmospheric Retrievals
- [Glüsenkamp (2020)381 (2008.05825)] - Unifying Supervised Learning and VAEs – Automating Statistical Inference in High-energy Physics
- [Rousseau et al. (2020) 382 (AIHEP)] - Machine Learning Scientific Competitions and Datasets
- [Cranmer et al. (2021) 383 (PNAS)] - A Bayesian Neural Network Predicts the Dissolution of Compact Planetary Systems
- [Kochkov et al. (2021) 384 (PANS)] - Machine Learning Accelerated Computational Fluid Dynamics
- [Visschers et al. (2021) 385 (Mach. learn.: sci. technol.)] - Rapid Parameter Estimation of Discrete Decaying Signals Using Autoencoder Networks
- [Guidetti et al. (2021) 386 (2103.08662)] - dNNsolve: an efficient NN-based PDE solver
- [Liu et al. (2021) 387 (PRE)] - Machine-learning Non-conservative Dynamics for New-physics Detection
- [Rosofsky & Huerta (2022) 388 (Mach. learn.: sci. technol.)] - Applications of Physics Informed Neural Operators
- [Katsube et al. (2022) 389 (PRD)] - Deep Learning Metric Detectors in General Relativity
- [Luna et al. (2022) 390 (2212.06103)] - Solving the Teukolsky Equation with Physics-Informed Neural Networks
- [Cornell et al. (2022) [@PhysRevD.106.124047] (PRD)] - Using Physics-Informed Neural Networks to Compute Quasinormal Modes
- [Hatefi et al. (2023) 391 (2302.04619)] - Analysis of Black Hole Solutions in Parabolic Class Using Neural Networks
- [Sabbatini & Grimani (2023) 392 (2302.06740)] - Solar Wind Speed Estimate with Machine Learning Ensemble Models for LISA
- [Ma & Vajente (2023) 393 (2302.07921)] - A Deep Learning Technique to Control the Non-linear Dynamics of a Gravitational-wave Interferometer
- [Rosofsky & Huerta (2023) 394 (2302.08332)] - Magnetohydrodynamics with Physics Informed Neural Operators
- [Lim et al. (2023) 395 (2305.13358)] - Mapping Dark Matter in the Milky Way Using Normalizing Flows and Gaia DR3
- [Dialektopoulos et al. (2023) 396 (2305.15500)] - Neural Network Reconstruction of Scalar-Tensor Cosmology
- [Liu & Max (2022) 397 (PRL)] - Machine-Learning Hidden Symmetries
License¶
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
-
Manan Agarwal, Jay Alameda, Jeroen Audenaert, Will Benoit, Damon Beveridge, Meghna Bhattacharya, Chayan Chatterjee, Deep Chatterjee, Andy Chen, Muhammed Saleem Cholayil, Chia-Jui Chou, Sunil Choudhary, Michael Coughlin, Maximilian Dax, Aman Desai, Andrea Di Luca, Javier Mauricio Duarte, Steven Farrell, Yongbin Feng, Pooyan Goodarzi, Ekaterina Govorkova, Matthew Graham, Jonathan Guiang, Alec Gunny, Weichangfeng Guo, Janina Hakenmueller, Ben Hawks, Shih-Chieh Hsu, Pratik Jawahar, Xiangyang Ju, Erik Katsavounidis, Manolis Kellis, Elham E. Khoda, Fatima Zahra Lahbabi, Van Tha Bik Lian, Mia Liu, Konstantin Malanchev, Ethan Marx, William Patrick McCormack, Alistair McLeod, Geoffrey Mo, Eric Anton Moreno, Daniel Muthukrishna, Gautham Narayan, Andrew Naylor, Mark Neubauer, Michael Norman, Rafia Omer, Kevin Pedro, Joshua Peterson, Michael Pürrer, Ryan Raikman, Shivam Raj, George Ricker, Jared Robbins, Batool Safarzadeh Samani, Kate Scholberg, Alex Schuy, Vasileios Skliris, Siddharth Soni, Niharika Sravan, Patrick Sutton, Victoria Ashley Villar, Xiwei Wang, Linqing Wen, Frank Wuerthwein, Tingjun Yang, and Shu-Wei Yeh. Applications of Deep Learning to physics workflows. June 2023. Comment: Whitepaper resulting from Accelerating Physics with ML@MIT workshop in Jan/Feb 2023. arXiv:2306.08106. ↩
-
E. A. Huerta, Ben Blaiszik, L. Catherine Brinson, Kristofer E. Bouchard, Daniel Diaz, Caterina Doglioni, Javier M. Duarte, Murali Emani, Ian Foster, Geoffrey Fox, Philip Harris, Lukas Heinrich, Shantenu Jha, Daniel S. Katz, Volodymyr Kindratenko, Christine R. Kirkpatrick, Kati Lassila-Perini, Ravi K. Madduri, Mark S. Neubauer, Fotis E. Psomopoulos, Avik Roy, Oliver Rübel, Zhizhen Zhao, and Ruike Zhu. FAIR for AI: An interdisciplinary and international community building perspective. Scientific Data, 101:487, July 2023. Comment: 10 pages, comments welcome! arXiv:2210.08973, doi:10.1038/s41597-023-02298-6. ↩
-
Elena Cuoco, Barbara Patricelli, Alberto Iess, and Filip Morawski. Computational challenges for multimodal astrophysics. Nature Computational Science, 28:479–485, August 2022. doi:10.1038/s43588-022-00288-z. ↩
-
Nikil Ravi, Pranshu Chaturvedi, E. A. Huerta, Zhengchun Liu, Ryan Chard, Aristana Scourtas, K. J. Schmidt, Kyle Chard, Ben Blaiszik, and Ian Foster. FAIR principles for AI models with a practical application for accelerated high energy diffraction microscopy. Scientific Data, 91:657, November 2022. Comment: 10 pages, 3 figures. Comments welcome! arXiv:2207.00611, doi:10.1038/s41597-022-01712-9. ↩
-
Philip Harris, Erik Katsavounidis, William Patrick McCormack, Dylan Rankin, Yongbin Feng, Abhijith Gandrakota, Christian Herwig, Burt Holzman, Kevin Pedro, Nhan Tran, Tingjun Yang, Jennifer Ngadiuba, Michael Coughlin, Scott Hauck, Shih-Chieh Hsu, Elham E. Khoda, Deming Chen, Mark Neubauer, Javier Duarte, Georgia Karagiorgi, and Mia Liu. Physics Community Needs, Tools, and Resources for Machine Learning. arXiv:2203.16255 [gr-qc, physics:hep-ex, physics:physics], March 2022. Comment: Contribution to Snowmass 2021, 33 pages, 5 figures. arXiv:2203.16255. ↩
-
Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bähr, Jürgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomás E. Müller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Dongning Guo, Kyle J. Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belina von Krosigk, Shen Wang, and Thomas K. Warburton. Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 2022. Comment: 66 pages, 13 figures, 5 tables. arXiv:2110.13041. ↩
-
Cora Dvorkin, Siddharth Mishra-Sharma, Brian Nord, V. Ashley Villar, Camille Avestruz, Keith Bechtol, Aleksandra Ćiprijanović, Andrew J. Connolly, Lehman H. Garrison, Gautham Narayan, and Francisco Villaescusa-Navarro. Machine Learning and Cosmology. arXiv:2203.08056 [astro-ph, physics:hep-ph, stat], March 2022. Comment: Contribution to Snowmass 2021. 32 pages. arXiv:2203.08056. ↩
-
Rory Smith. OK Computer. Nature Physics, 181:9–11, January 2022. doi:10.1038/s41567-021-01436-4. ↩
-
Michelle Ntampaka, Matthew Ho, and Brian Nord. Building trustworthy machine learning models for astronomy. arXiv preprint arXiv:2111.14566, November 2021. arXiv:2111.14566. ↩
-
E. A. Huerta and Zhizhen Zhao. Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. In Cosimo Bambi, Stavros Katsanevas, and Konstantinos D. Kokkotas, editors, Handbook of Gravitational Wave Astronomy, pages 1–27. Springer Singapore, Singapore, 2020. arXiv:2105.06479, doi:10.1007/978-981-15-4702-7_47-1. ↩
-
Surbhi Agrawal, Rahul Aedula, and D. S. Rahul Surya. Machine learning based analysis of gravitational waves. In Snehanshu Saha, Nithin Nagaraj, and Shikha Tripathi, editors, Modeling, Machine Learning and Astronomy, 158–175. Singapore, 2020. Springer Singapore. ↩
-
E. A. Huerta, Asad Khan, Xiaobo Huang, Minyang Tian, Maksim Levental, Ryan Chard, Wei Wei, Maeve Heflin, Daniel S. Katz, Volodymyr Kindratenko, Dawei Mu, Ben Blaiszik, and Ian Foster. Accelerated, scalable and reproducible AI-driven gravitational wave detection. Nature Astronomy, 510:1062–1068, October 2021. arXiv:2012.08545v1, doi:10.1038/s41550-021-01405-0. ↩
-
Michael W. Coughlin. Lessons from counterpart searches in LIGO and Virgo’s third observing campaign. Nature Astronomy, 46:550–552, June 2020. doi:10.1038/s41550-020-1130-3. ↩
-
Lenka Zdeborová. Understanding deep learning is also a job for physicists. Nature Physics, 166:602–604, June 2020. doi:10.1038/s41567-020-0929-2. ↩
-
Elena Cuoco, Jade Powell, Marco Cavaglià, Kendall Ackley, Michał Bejger, Chayan Chatterjee, Michael Coughlin, Scott Coughlin, Paul Easter, Reed Essick, Hunter Gabbard, Timothy Gebhard, Shaon Ghosh, Leïla Haegel, Alberto Iess, David Keitel, Zsuzsa Márka, Szabolcs Márka, Filip Morawski, Tri Nguyen, Rich Ormiston, Michael Pürrer, Massimiliano Razzano, Kai Staats, Gabriele Vajente, and Daniel Williams. Enhancing gravitational-wave science with machine learning. Machine Learning: Science and Technology, 21:011002, December 2020. arXiv:2005.03745v2, doi:10.1088/2632-2153/abb93a. ↩
-
E. A. Huerta, Asad Khan, Edward Davis, Colleen Bushell, William D. Gropp, Daniel S. Katz, Volodymyr Kindratenko, Seid Koric, William T. C. Kramer, Brendan McGinty, Kenton McHenry, and Aaron Saxton. Convergence of artificial intelligence and high performance computing on NSF-supported cyberinfrastructure. Journal of Big Data, 71:88, October 2020. arXiv:2003.08394, doi:10.1186/s40537-020-00361-2. ↩
-
Christopher J. Fluke and Colin Jacobs. Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. WIREs Data Mining and Knowledge Discovery, 102:e1349, March 2020. arXiv:1912.02934, doi:10.1002/widm.1349. ↩
-
E. A. Huerta, Roland Haas, Shantenu Jha, Mark Neubauer, and Daniel S. Katz. Supporting High-Performance and High-Throughput Computing for Experimental Science. Computing and Software for Big Science, 31:5, February 2019. arXiv:1810.03056, doi:10.1007/s41781-019-0022-7. ↩
-
E. A. Huerta, Gabrielle Allen, Igor Andreoni, Javier M. Antelis, Etienne Bachelet, G. Bruce Berriman, Federica B. Bianco, Rahul Biswas, Matias Carrasco Kind, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Maya Fishbach, Francisco Forster, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Robert Gruendl, Anushri Gupta, Roland Haas, Sarah Habib, Elise Jennings, Margaret W. G. Johnson, Erik Katsavounidis, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Zsuzsa Marka, Kenton McHenry, J. M. Miller, Claudia Moreno, M. S. Neubauer, Steve Oberlin, Alexander R. Olivas, Donald Petravick, Adam Rebei, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard F. Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Leo P. Singer, Brigitta M. Sipocz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, Jinjun Xiong, and Zhizhen Zhao. Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nature Reviews Physics, 110:600–608, October 2019. arXiv:1911.11779, doi:10.1038/s42254-019-0097-4. ↩
-
Gabrielle Allen, Igor Andreoni, Etienne Bachelet, G. Bruce Berriman, Federica B. Bianco, Rahul Biswas, Matias Carrasco Kind, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Anushri Gupta, Roland Haas, E. A. Huerta, Elise Jennings, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Kenton McHenry, J. M. Miller, M. S. Neubauer, Steve Oberlin, Alexander R. Olivas Jr au2, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, Jinjun Xiong, and Zhizhen Zhao. Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era. arXiv preprint arXiv:1902.00522, 2019. arXiv:1902.00522. ↩
-
Gwendolyn Eadie, Thomas J Loredo, Ashish A Mahabal, Aneta Siemiginowska, Eric Feigelson, Eric B Ford, \relax SG Djorgovski, Matthew Graham, Zeljko Ivezic, Kirk Borne, and others. Realizing the potential of astrostatistics and astroinformatics. arXiv preprint arXiv:1909.11714, 2019. arXiv:1909.11714. ↩
-
R. J. Foley, K. D. Alexander, I. Andreoni, I. Arcavi, K. Auchettl, J. Barnes, G. Baym, E. C. Bellm, A. M. Beloborodov, N. Blagorodnova, J. P. Blakeslee, P. R. Brady, M. Branchesi, J. S. Brown, N. Butler, M. Cantiello, R. Chornock, D. O. Cook, J. Cooke, D. L. Coppejans, A. Corsi, S. M. Couch, M. W. Coughlin, D. A. Coulter, P. S. Cowperthwaite, T. Dietrich, G. Dimitriadis, M. R. Drout, J. H. Elias, B. Farr, R. Fernandez, A. V. Filippenko, W. Fong, T. Fragos, D. A. Frail, W. L. Freedman, C. L. Fryer, V. Z. Golkhou, D. Hiramatsu, J. Hjorth, A. Horesh, G. Hosseinzadeh, K. Hotokezaka, D. A. Howell, T. Hung, D. O. Jones, V. Kalogera, D. Kasen, W. E. Kerzendorf, C. D. Kilpatrick, R. P. Kirshner, K. Krisciunas, J. M. Lattimer, D. Lazzati, A. J. Levan, A. I. MacFadyen, K. Maeda, I. Mandel, K. S. Mandel, B. Margalit, R. Margutti, J. McIver, B. D. Metzger, K. Mooley, T. Moriya, A. Murguia-Berthier, G. Narayan, M. Nicholl, S. Nissanke, K. Nomoto, J. M. O’Meara, R. O’Shaughnessy, E. O’Connor, A. Palmese, Y. -C. Pan, C. Pankow, K. Paterson, D. A. Perley, R. Perna, A. L. Piro, T. A. Pritchard, E. Quataert, D. Radice, E. Ramirez-Ruiz, S. Reddy, A. Rest, A. G. Riess, C. L. Rodriguez, C. Rojas-Bravo, E. M. Rossi, S. Rosswog, M. Ruiz, S. L. Shapiro, D. H. Shoemaker, M. R. Siebert, D. M. Siegel, K. Siellez, N. Smith, M. Soares-Santos, N. B. Suntzeff, R. Surman, M. Tanaka, N. R. Tanvir, G. Terreran, S. Valenti, V. A. Villar, L. Wang, S. A. Webb, J. C. Wheeler, P. K. G. Williams, S. Woosley, M. Zaldarriaga, and M. Zevin. Gravity and light: Combining gravitational wave and electromagnetic observations in the 2020s. In arXiv Preprint arXiv:1903.04553. 2019. arXiv:1903.04553. ↩
-
M Lightman, J Thurakal, J Dwyer, R Grossman, P Kalmus, L Matone, J Rollins, S Zairis, and S Márka. Prospects of gravitational wave data mining and exploration via evolutionary computing. Journal of Physics: Conference Series, 32:58–65, March 2006. doi:10.1088/1742-6596/32/1/010. ↩
-
R Essick, L Blackburn, and E Katsavounidis. Optimizing vetoes for gravitational-wave transient searches. Classical and Quantum Gravity, 3015:155010, June 2013. arXiv:1303.7159, doi:10.1088/0264-9381/30/15/155010. ↩↩
-
Rahul Biswas, Lindy Blackburn, Junwei Cao, Reed Essick, Kari Alison Hodge, Erotokritos Katsavounidis, Kyungmin Kim, Young-Min Kim, Eric-Olivier Le Bigot, Chang-Hwan Lee, John J. Oh, Sang Hoon Oh, Edwin J. Son, Ye Tao, Ruslan Vaulin, and Xiaoge Wang. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data. Physical Review D, 886:062003, September 2013. arXiv:1303.6984, doi:10.1103/PhysRevD.88.062003. ↩↩
-
Paul T. Baker, Sarah Caudill, Kari A. Hodge, Dipongkar Talukder, Collin Capano, and Neil J. Cornish. Multivariate classification with random forests for gravitational wave searches of black hole binary coalescence. Physical Review D, 916:062004, March 2015. arXiv:1412.6479, doi:10.1103/PhysRevD.91.062004. ↩
-
Reed Essick Ruslan Vaulin, Lindy Blackburn and Erik Katsavounidis. iDQ: The real-time pipeline for glitch identification. Technical Report, LIGO Document G1300253-v1 This document is not publicly accessible\. / MIT, 2013. ↩
-
Derek Davis, Laurel V White, and Peter R Saulson. Utilizing aLIGO glitch classifications to validate gravitational-wave candidates. Classical and Quantum Gravity, 3714:145001, June 2020. arXiv:2002.09429, doi:10.1088/1361-6382/ab91e6. ↩
-
Jade Powell, Daniele Trifirò, Elena Cuoco, Ik Siong Heng, and Marco Cavaglià. Classification methods for noise transients in advanced gravitational-wave detectors. Classical and Quantum Gravity, 3221:215012, October 2015. arXiv:1505.01299, doi:10.1088/0264-9381/32/21/215012. ↩
-
Jade Powell, Alejandro Torres-Forné, Ryan Lynch, Daniele Trifirò, Elena Cuoco, Marco Cavaglià, Ik Siong Heng, and José A Font. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data. Classical and Quantum Gravity, 343:034002, January 2017. arXiv:1609.06262, doi:10.1088/1361-6382/34/3/034002. ↩
-
Jade Powell. Model Selection for Gravitational-Wave Transient Sources. PhD thesis, University of Glasgow, 2017. ↩
-
Elena Cuoco. Strategy for signal classification to improve data quality for Advanced Detectors gravitational-wave searches. In Proceedings, 11th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments SciNeGHE 2016 : Pisa, Italy, October 18-21, 2016, volume Nuovo Cim. C40. Country unknown/Code not available, January 2018. doi:10.1393/ncc/i2017-17124-4. ↩
-
Massimiliano Razzano and Elena Cuoco. Image-based deep learning for classification of noise transients in gravitational wave detectors. Classical and Quantum Gravity, 359:095016, April 2018. arXiv:1803.09933, doi:10.1088/1361-6382/aab793. ↩
-
Daniel George, Hongyu Shen, and E. A. Huerta. Classification and unsupervised clustering of LIGO data with Deep Transfer Learning. Physical Review D, 9710:101501, May 2018. arXiv:1706.07446, doi:10.1103/PhysRevD.97.101501. ↩↩
-
Elena Cuoco, Massimiliano Razzano, and Andrei Utina. Wavelet-based classification of transient signals for gravitational wave detectors. In 2018 26th European Signal Processing Conference EUSIPCO, 2648–2652. IEEE, 2018. doi:10.23919/EUSIPCO.2018.8553393. ↩
-
M Zevin, S Coughlin, S Bahaadini, E Besler, N Rohani, S Allen, M Cabero, K Crowston, A K Katsaggelos, S L Larson, T K Lee, C Lintott, T B Littenberg, A Lundgren, C Østerlund, J R Smith, L Trouille, and V Kalogera. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Classical and Quantum Gravity, 346:064003, February 2017. arXiv:1611.04596, doi:10.1088/1361-6382/aa5cea. ↩
-
S. Coughlin, S. Bahaadini, N. Rohani, M. Zevin, O. Patane, M. Harandi, C. Jackson, V. Noroozi, S. Allen, J. Areeda, M. Coughlin, P. Ruiz, C. P. L. Berry, K. Crowston, A. K. Katsaggelos, A. Lundgren, C. Østerlund, J. R. Smith, L. Trouille, and V. Kalogera. Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning. Physical Review D, 998:082002, April 2019. arXiv:1903.04058, doi:10.1103/PhysRevD.99.082002. ↩
-
S. Soni, C. P. L. Berry, S. B. Coughlin, M. Harandi, C. B. Jackson, K. Crowston, C. Østerlund, O. Patane, A. K. Katsaggelos, L. Trouille, V.-G. Baranowski, W. F. Domainko, K. Kaminski, M. A. Lobato Rodriguez, U. Marciniak, P. Nauta, G. Niklasch, R. R. Rote, B. Téglás, C. Unsworth, and C. Zhang. Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning. Classical and Quantum Gravity, 3819:195016, September 2021. arXiv:2103.12104, doi:10.1088/1361-6382/ac1ccb. ↩
-
Marco Cavaglia, Kai Staats, and Teerth Gill. Finding the Origin of Noise Transients in LIGO Data with Machine Learning. Communications in Computational Physics, 25LIGO\-P1800043:963–987, 2019. arXiv:1812.05225, doi:10.4208/cicp.OA-2018-0092. ↩
-
N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and N. S. Philip. Transient classification in LIGO data using difference boosting neural network. Physical Review D, 9510:104059, May 2017. arXiv:1609.07259, doi:10.1103/PhysRevD.95.104059. ↩
-
Miquel Llorens-Monteagudo, Alejandro Torres-Forné, José A Font, and Antonio Marquina. Classification of gravitational-wave glitches via dictionary learning. Classical and Quantum Gravity, 367:075005, April 2019. arXiv:1811.03867, doi:10.1088/1361-6382/ab0657. ↩
-
P. Astone, P. Cerdá-Durán, I. Di Palma, M. Drago, F. Muciaccia, C. Palomba, and F. Ricci. New method to observe gravitational waves emitted by core collapse supernovae. Physical Review D, 9812:122002, December 2018. arXiv:1812.05363, doi:10.1103/PhysRevD.98.122002. ↩↩
-
Robert E. Colgan, K. Rainer Corley, Yenson Lau, Imre Bartos, John N. Wright, Zsuzsa Márka, and Szabolcs Márka. Efficient gravitational-wave glitch identification from environmental data through machine learning. Physical Review D, 10110:102003, May 2020. arXiv:1911.11831, doi:10.1103/PhysRevD.101.102003. ↩
-
Sara Bahaadini, Neda Rohani, Scott Coughlin, Michael Zevin, Vicky Kalogera, and Aggelos K Katsaggelos. Deep multi-view models for glitch classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP, 2931–2935. IEEE, 2017. arXiv:1705.00034, doi:10.1109/ICASSP.2017.7952693. ↩
-
S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevin, J.R. Smith, V. Kalogera, and A. Katsaggelos. Machine learning for Gravity Spy: Glitch classification and dataset. Information Sciences, 444:172–186, May 2018. doi:10.1016/j.ins.2018.02.068. ↩
-
S. Bahaadini, N. Rohani, A. K. Katsaggelos, V. Noroozi, S. Coughlin, and M. Zevin. DIRECT: Deep discriminative embedding for clustering of LIGO data. In 2018 25th IEEE International Conference on Image Processing ICIP, 748–752. IEEE, 2018. arXiv:1805.02296, doi:10.1109/ICIP.2018.8451708. ↩
-
A Biswas, J McIver, and A Mahabal. New methods to assess and improve LIGO detector duty cycle. Classical and Quantum Gravity, 3717:175008, August 2020. arXiv:1910.12143, doi:10.1088/1361-6382/ab8650. ↩
-
Pablo Morales-Álvarez, Pablo Ruiz, Scott Coughlin, Rafael Molina, and Aggelos K. Katsaggelos. Scalable variational gaussian processes for crowdsourcing: Glitch detection in LIGO. IEEE Transactions on Pattern Analysis and Machine Intelligence, 443:1534–1551, 2022. arXiv:1911.01915, doi:10.1109/TPAMI.2020.3025390. ↩
-
Tom Marianer, Dovi Poznanski, and J Xavier Prochaska. A semisupervised machine learning search for never-seen gravitational-wave sources. Monthly Notices of the Royal Astronomical Society, 5004:5408–5419, February 2021. arXiv:2010.11949, doi:10.1093/mnras/staa3550. ↩↩
-
Reymond Mesuga and Brian James Bayanay. On the efficiency of various deep transfer learning models in glitch waveform detection in gravitational-wave data. arXiv preprint arXiv:2106.01863, July 2021. arXiv:2106.01863, doi:10.13140/RG.2.2.16403.20000. ↩
-
Sivaramakrishnan Sankarapandian and Brian Kulis. β-annealed variational autoencoder for glitches. arXiv preprint arXiv:2107.10667, July 2021. arXiv:2107.10667. ↩
-
Hang Yu and Rana X. Adhikari. Nonlinear noise regression in gravitational-wave detectors with convolutional neural networks. arXiv preprint arXiv:2111.03295, 2021. arXiv:2111.03295. ↩
-
Yusuke Sakai, Yousuke Itoh, Piljong Jung, Keiko Kokeyama, Chihiro Kozakai, Katsuko T. Nakahira, Shoichi Oshino, Yutaka Shikano, Hirotaka Takahashi, Takashi Uchiyama, Gen Ueshima, Tatsuki Washimi, Takahiro Yamamoto, and Takaaki Yokozawa. Unsupervised Learning Architecture for Classifying the Transient Noise of Interferometric Gravitational-wave Detectors. arXiv:2111.10053 [gr-qc, physics:physics], November 2021. Comment: 18 pages, 9 figures. arXiv:2111.10053. ↩
-
Jonathan Merritt, Ben Farr, Rachel Hur, Bruce Edelman, and Zoheyr Doctor. Transient glitch mitigation in Advanced LIGO data. Physical Review D, 10410:102004, November 2021. arXiv:2108.12044, doi:10.1103/PhysRevD.104.102004. ↩
-
Robert E. Colgan, Jingkai Yan, Zsuzsa Márka, Imre Bartos, Szabolcs Márka, and John N. Wright. Architectural Optimization and Feature Learning for High-Dimensional Time Series Datasets. arXiv:2202.13486 [astro-ph], February 2022. arXiv:2202.13486. ↩
-
Derek Davis, Max Trevor, Simone Mozzon, and Laura K. Nuttall. Incorporating information from LIGO data quality streams into the PyCBC search for gravitational waves. Physical Review D, 10610:102006, November 2022. Comment: 14 pages, 5 figures. arXiv:2204.03091, doi:10.1103/PhysRevD.106.102006. ↩
-
Sara Bahaadini, Yunan Wu, Scott Coughlin, Michael Zevin, and Aggelos K. Katsaggelos. Discriminative Dimensionality Reduction using Deep Neural Networks for Clustering of LIGO Data. May 2022. arXiv:2205.13672. ↩
-
Jianqi Yan, Alex P Leung, and C Y Hui. On improving the performance of glitch classification for gravitational wave detection by using Generative Adversarial Networks. Monthly Notices of the Royal Astronomical Society, pages stac1996, July 2022. Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 5 tables. arXiv:2207.04001, doi:10.1093/mnras/stac1996. ↩
-
Yusuke Sakai, Yousuke Itoh, Piljong Jung, Keiko Kokeyama, Chihiro Kozakai, Katsuko T. Nakahira, Shoichi Oshino, Yutaka Shikano, Hirotaka Takahashi, Takashi Uchiyama, Gen Ueshima, Tatsuki Washimi, Takahiro Yamamoto, and Takaaki Yokozawa. Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset. Annalen der Physik, n/an/a:2200140, August 2022. Comment: 17 pages, 10 figures, Matches version published in Annalen der Physik https://doi.org/10.1002/andp.202200140. arXiv:2208.03623, doi:10.1002/andp.202200140. ↩
-
Jade Powell, Ling Sun, Katinka Gereb, Paul D Lasky, and Markus Dollmann. Generating transient noise artefacts in gravitational-wave detector data with generative adversarial networks. Classical and Quantum Gravity, 403:035006, January 2023. arXiv:2207.00207, doi:10.1088/1361-6382/acb038. ↩
-
Al Mahmud Al Mamun and Md Iqbal. Classifying the gravitational waves using the deep learning technique. Material Science & Engineering International Journal, 6:41–46, June 2022. doi:10.15406/mseij.2022.06.00178. ↩
-
Tabata Aira Ferreira and Cesar Augusto Costa. Comparison between t-SNE and cosine similarity for LIGO glitches analysis. Classical and Quantum Gravity, 3916:165013, August 2022. doi:10.1088/1361-6382/ac813d. ↩
-
Tom Dooney, Stefano Bromuri, and Lyana Curier. DVGAN: Stabilize Wasserstein GAN training for time-domain Gravitational Wave physics. September 2022. Comment: 10 pages, 6 figures, 3 tables. arXiv:2209.13592. ↩
-
Vincent Boudart. A convolutional neural network to distinguish glitches from minute-long gravitational wave transients. October 2022. Comment: 12 pages, 15 figures. arXiv:2210.04588. ↩
-
O.T. Bişkin, İ. Kırbaş, and A. Çelik. A fast and time-efficient glitch classification method: A deep learning-based visual feature extractor for machine learning algorithms. Astronomy and Computing, 42:100683, January 2023. doi:10.1016/j.ascom.2022.100683. ↩
-
Pablo Ruiz, Pablo Morales-Álvarez, Scott Coughlin, Rafael Molina, and Aggelos K. Katsaggelos. Probabilistic fusion of crowds and experts for the search of gravitational waves. Knowledge-Based Systems, pages 110183, December 2022. doi:10.1016/j.knosys.2022.110183. ↩
-
M. Razzano, F. Di Renzo, F. Fidecaro, G. Hemming, and S. Katsanevas. GWitchHunters: Machine Learning and citizen science to improve the performance of Gravitational Wave detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1048:167959, March 2023. Comment: 5 pages, 1 figures, Contribution to Proceedings of the 15 Pisa Meeting on Advanced Detectors. arXiv:2301.05112, doi:10.1016/j.nima.2022.167959. ↩
-
Sophie Bini, Gabriele Vedovato, Marco Drago, Francesco Salemi, and Giovanni Andrea Prodi. An autoencoder neural network integrated into gravitational-wave burst searches to improve the rejection of noise transients. March 2023. Comment: 19 pages, 7 figures, submitted to Classical and Quantum Gravity. arXiv:2303.05986. ↩
-
Tiago Fernandes, Samuel Vieira, Antonio Onofre, Juan Calderón Bustillo, Alejandro Torres-Forné, and José A Font. Convolutional neural networks for the classification of glitches in gravitational-wave data streams. Classical and Quantum Gravity, 4019:195018, September 2023. Comment: 15 pages, 14 figures. arXiv:2303.13917, doi:10.1088/1361-6382/acf26c. ↩
-
Neev Shah, Alan M Knee, Jess McIver, and David C Stenning. Waves in a forest: a random forest classifier to distinguish between gravitational waves and detector glitches. Classical and Quantum Gravity, 4023:235008, November 2023. Comment: 18 pages, 5 figures, submitted to CQG. arXiv:2306.13787, doi:10.1088/1361-6382/ad0424. ↩
-
Nayyer Raza, Man Leong Chan, Daryl Haggard, Ashish Mahabal, Jess McIver, Thomas C. Abbott, Eitan Buffaz, and Nicholas Vieira. Explaining the GWSkyNet-Multi machine learning classifier predictions for gravitational-wave events. August 2023. Comment: 22 pages, 11 figures, submitted to ApJ. arXiv:2308.12357. ↩
-
Elena Cuoco, Giovanni Calamai, Leonardo Fabbroni, Giovanni Losurdo, Massimo Mazzoni, Ruggero Stanga, and Flavio Vetrano. On-line power spectra identification and whitening for the noise in interferometric gravitational wave detectors. Classical and Quantum Gravity, 189:1727–1751, April 2001. arXiv:gr-qc/0011041, doi:10.1088/0264-9381/18/9/309. ↩
-
Alejandro Torres-Forné, Antonio Marquina, José A. Font, and José M. Ibáñez. Denoising of gravitational wave signals via dictionary learning algorithms. Physical Review D, 9412:124040, December 2016. arXiv:1612.01305, doi:10.1103/PhysRevD.94.124040. ↩
-
Alejandro Torres-Forné, Elena Cuoco, José A. Font, and Antonio Marquina. Application of dictionary learning to denoise LIGO’s blip noise transients. Physical Review D, 1022:023011, July 2020. arXiv:2002.11668, doi:10.1103/PhysRevD.102.023011. ↩
-
A. Akhshi, H. Alimohammadi, S. Baghram, S. Rahvar, M. Reza Rahimi Tabar, and H. Arfaei. A template-free approach for waveform extraction of gravitational wave events. Scientific Reports, 111:20507, October 2021. arXiv:2005.11352, doi:10.1038/s41598-021-98821-z. ↩
-
Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari, and Erik Katsavounidis. Noise reduction in gravitational-wave data via deep learning. Physical Review Research, 23:033066, July 2020. arXiv:2005.06534, doi:10.1103/PhysRevResearch.2.033066. ↩
-
Reed Essick, Patrick Godwin, Chad Hanna, Lindy Blackburn, and Erik Katsavounidis. iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors. Machine Learning: Science and Technology, 21:015004, December 2020. arXiv:2005.12761, doi:10.1088/2632-2153/abab5f. ↩
-
Kentaro Mogushi. Reduction of transient noise artifacts in gravitational-wave data using deep learning. arXiv preprint arXiv:2105.10522, May 2021. arXiv:2105.10522. ↩
-
Robert E. Colgan, Zsuzsa Márka, Jingkai Yan, Imre Bartos, John N. Wright, and Szabolcs Márka. Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through Feature Learning. arXiv:2203.05086 [astro-ph, physics:gr-qc], March 2022. arXiv:2203.05086. ↩
-
Hang Yu and Rana X. Adhikari. Nonlinear Noise Cleaning in Gravitational-Wave Detectors With Convolutional Neural Networks. Frontiers in Artificial Intelligence, 2022. ↩
-
T. Kato, M. Hasegawa, and S. Hirobayashi. Validation of denoising system using non-harmonic analysis and denoising convolutional neural network for removal of Gaussian noise from gravitational waves observed by LIGO. Astronomy and Computing, pages 100607, June 2022. doi:10.1016/j.ascom.2022.100607. ↩
-
Gregory Ashton. Gaussian Processes for Gravitational-wave Astronomy. September 2022. Comment: 12 pages, under review by MNRAS. arXiv:2209.15547. ↩
-
Chinthak Murali and David Lumley. Detecting and Denoising Gravitational Wave Signals from Binary Black Holes using Deep Learning. October 2022. Comment: 15 pages, 11 figures. arXiv:2210.01718. ↩
-
Zhilan Yang, Haoyue Zhang, Peng Xu, and Ziren Luo. Unsupervised noise reductions for gravitational reference sensors or accelerometers based on Noise2Noise method. May 2023. Comment: 16 pages, 17 figures. arXiv:2305.06735. ↩
-
Zoheyr Doctor, Ben Farr, Daniel E. Holz, and Michael Pürrer. Statistical gravitational waveform models: What to simulate next? Physical Review D, 9612:123011, December 2017. doi:10.1103/PhysRevD.96.123011. ↩
-
Jonathan Blackman, Scott E. Field, Mark A. Scheel, Chad R. Galley, Daniel A. Hemberger, Patricia Schmidt, and Rory Smith. A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers. Physical Review D, 9510:104023, May 2017. doi:10.1103/PhysRevD.95.104023. ↩
-
E. A. Huerta, C. J. Moore, Prayush Kumar, Daniel George, Alvin J. K. Chua, Roland Haas, Erik Wessel, Daniel Johnson, Derek Glennon, Adam Rebei, A. Miguel Holgado, Jonathan R. Gair, and Harald P. Pfeiffer. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Physical Review D, 972:024031, January 2018. arXiv:1711.06276, doi:10.1103/PhysRevD.97.024031. ↩
-
Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Lawrence E. Kidder, and Harald P. Pfeiffer. Surrogate model of hybridized numerical relativity binary black hole waveforms. Physical Review D, 996:064045, March 2019. arXiv:1812.07865, doi:10.1103/PhysRevD.99.064045. ↩
-
Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Davide Gerosa, Leo C. Stein, Lawrence E. Kidder, and Harald P. Pfeiffer. Surrogate models for precessing binary black hole simulations with unequal masses. Physical Review Research, 13:033015, October 2019. arXiv:1905.09300, doi:10.1103/PhysRevResearch.1.033015. ↩
-
Alvin J.K. Chua. Topics in Gravitational-Wave Astronomy: Theoretical Studies, Source Modelling and Statistical Methods. PhD thesis, Cambridge U., Inst. of Astron., May 2017. doi:10.17863/CAM.9010. ↩
-
Alvin J. K. Chua, Chad R. Galley, and Michele Vallisneri. Reduced-order modeling with artificial neurons for gravitational-wave inference. Physical Review Letters, 12221:211101, May 2019. arXiv:1811.05491, doi:10.1103/PhysRevLett.122.211101. ↩
-
Stefano Schmidt. Gravitational wave modelling with machine lerning. Master’s thesis, Università degli Studi di Milano, 2019. ↩
-
Zhuo Chen, E. A. Huerta, Joseph Adamo, Roland Haas, Eamonn O’Shea, Prayush Kumar, and Chris Moore. Observation of eccentric binary black hole mergers with second and third generation gravitational wave detector networks. Physical Review D, 1038:084018, April 2021. arXiv:2008.03313, doi:10.1103/PhysRevD.103.084018. ↩
-
Sebastian Khan and Rhys Green. Gravitational-wave surrogate models powered by artificial neural networks. Physical Review D, 1036:064015, March 2021. arXiv:2008.12932v1, doi:10.1103/PhysRevD.103.064015. ↩
-
Stefano Schmidt, Matteo Breschi, Rossella Gamba, Giulia Pagano, Piero Rettegno, Gunnar Riemenschneider, Sebastiano Bernuzzi, Alessandro Nagar, and Walter Del Pozzo. Machine learning gravitational waves from binary black hole mergers. Physical Review D, 103:043020, February 2021. arXiv:2011.01958. ↩
-
Joongoo Lee, Sang Hoon Oh, Kyungmin Kim, Gihyuk Cho, John J. Oh, Edwin J. Son, and Hyung Mok Lee. Deep learning model on gravitational waveforms in merging and ringdown phases of binary black hole coalescences. Physical Review D, 10312:123023, June 2021. arXiv:2101.05685, doi:10.1103/PhysRevD.103.123023. ↩
-
Chung-Hao Liao and Feng-Li Lin. Deep generative models of gravitational waveforms via conditional autoencoder. Physical Review D, 10312:124051, June 2021. arXiv:2101.06685, doi:10.1103/PhysRevD.103.124051. ↩
-
Alvin J. K. Chua, Michael L. Katz, Niels Warburton, and Scott A. Hughes. Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis. Physical Review Letters, 1265:051102, February 2021. arXiv:2008.06071, doi:10.1103/PhysRevLett.126.051102. ↩
-
Brendan Keith, Akshay Khadse, and Scott E. Field. Learning orbital dynamics of binary black hole systems from gravitational wave measurements. Physical Review Research, 34:043101, November 2021. arXiv:2102.12695, doi:10.1103/PhysRevResearch.3.043101. ↩
-
J McGinn, C Messenger, M J Williams, and I S Heng. Generalised gravitational wave burst generation with generative adversarial networks. Classical and Quantum Gravity, 3815:155005, June 2021. arXiv:2103.01641, doi:10.1088/1361-6382/ac09cc. ↩
-
Paraskevi Nousi, Styliani-Christina Fragkouli, Nikolaos Passalis, Panagiotis Iosif, Theocharis Apostolatos, George Pappas, Nikolaos Stergioulas, and Anastasios Tefas. Autoencoder-driven spiral representation learning for gravitational wave surrogate modelling. Neurocomputing, 491:67–77, June 2022. arXiv:2107.04312, doi:10.1016/j.neucom.2022.03.052. ↩
-
Damián Barsotti, Franco Cerino, Manuel Tiglio, and Aarón Villanueva. Gravitational wave surrogates through automated machine learning. Classical and Quantum Gravity, 398:085011, March 2022. arXiv:2110.08901, doi:10.1088/1361-6382/ac5ba1. ↩
-
Asad Khan, E. A. Huerta, and Huihuo Zheng. Interpretable AI forecasting for numerical relativity waveforms of quasicircular, spinning, nonprecessing binary black hole mergers. Physical Review D, 1052:024024, January 2022. arXiv:2110.06968, doi:10.1103/PhysRevD.105.024024. ↩
-
Adam Coogan, Thomas D. P. Edwards, Horng Sheng Chia, Richard N. George, Katherine Freese, Cody Messick, Christian N. Setzer, Christoph Weniger, and Aaron Zimmerman. Efficient gravitational wave template bank generation with differentiable waveforms. Physical Review D, 10612:122001, December 2022. Comment: 15 pages, 6 figures. Comments welcome! Code can be found at https://github.com/adam-coogan/diffbank. arXiv:2202.09380, doi:10.1103/PhysRevD.106.122001. ↩
-
Felipe F. Freitas, Carlos A. R. Herdeiro, António P. Morais, António Onofre, Roman Pasechnik, Eugen Radu, Nicolas Sanchis-Gual, and Rui Santos. Generating gravitational waveform libraries of exotic compact binaries with deep learning. arXiv:2203.01267 [gr-qc], March 2022. Comment: 20 pages, 13 figures, 4 tables. arXiv:2203.01267. ↩
-
Styliani-Christina Fragkouli, Paraskevi Nousi, Nikolaos Passalis, Panagiotis Iosif, Nikolaos Stergioulas, and Anastasios Tefas. Deep residual error and bag-of-tricks learning for gravitational wave surrogate modeling. Applied Soft Computing, 147:110746, 2023. arXiv:2203.08434, doi:10.1016/j.asoc.2023.110746. ↩
-
Lucy M. Thomas, Geraint Pratten, and Patricia Schmidt. Accelerating multimodal gravitational waveforms from precessing compact binaries with artificial neural networks. Physical Review D: Particles and Fields, 106arXiv:2205\.14066:104029, November 2022. Comment: 18 pages including appendix and bibliography, 13 figures. arXiv:2205.14066, doi:10.1103/PhysRevD.106.104029. ↩
-
Deborah Ferguson. Optimizing the placement of numerical relativity simulations using a mismatch predicting neural network. Physical Review D, 1072:024034, January 2023. Comment: 14 pages, 11 figures. arXiv:2209.15144, doi:10.1103/PhysRevD.107.024034. ↩
-
Jacopo Tissino, Gregorio Carullo, Matteo Breschi, Rossella Gamba, Stefano Schmidt, and Sebastiano Bernuzzi. Combining effective-one-body accuracy and reduced-order-quadrature speed for binary neutron star merger parameter estimation with machine learning. Physical Review D: Particles and Fields, 1078:084037, April 2023. Comment: 20 pages, 10 figures. arXiv:2210.15684, doi:10.1103/PhysRevD.107.084037. ↩
-
Tibério Pereira and Riccardo Sturani. Deep learning waveform anomaly detector for numerical relativity catalogs. October 2022. Comment: 7 pages, 10 figures. arXiv:2210.07299. ↩
-
Michael L. Katz, Alvin J. K. Chua, Lorenzo Speri, Niels Warburton, and Scott A. Hughes. Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Physical Review D, 1046:064047, September 2021. All the code is publicly available as open-source software. Black Hole Perturbation Toolkit, Website: \href https://bhptoolkit .org/FastEMRIWaveforms_main.htmlhttps://bhptoolkit .org/FastEMRIWaveforms_main.html. Code releases with individual Document Object Identifier DOI are available on on Zenodo. Comment: 26 pages, 12 Figures, FastEMRIWaveforms Package: bhptoolkit.org/FastEMRIWaveforms/. arXiv:2104.04582, doi:10.1103/PhysRevD.104.064047. ↩
-
Daniel George and E. A. Huerta. Deep neural networks to enable real-time multimessenger astrophysics. Physical Review D, 974:044039, February 2018. arXiv:1701.00008, doi:10.1103/PhysRevD.97.044039. ↩↩
-
Daniel George and E.A. Huerta. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data. Physics Letters B, 778:64–70, March 2018. doi:10.1016/j.physletb.2017.12.053. ↩
-
Daniel George and E. A. Huerta. Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with LIGO Data. December 2017. Comment: Camera-ready final version accepted to NIPS 2017 conference workshop on Deep Learning for Physical Sciences and selected for contributed talk. Also awarded 1st place at ACM SRC at SC17. Extended article: arXiv:1711.03121. arXiv:1711.07966. ↩
-
Hongyu Shen, E A Huerta, Eamonn O’Shea, Prayush Kumar, and Zhizhen Zhao. Statistically-informed deep learning for gravitational wave parameter estimation. Machine Learning: Science and Technology, 31:015007, November 2021. arXiv:1903.01998, doi:10.1088/2632-2153/ac3843. ↩
-
Hunter Gabbard, Michael Williams, Fergus Hayes, and Chris Messenger. Matching matched filtering with deep networks for gravitational-wave astronomy. Physical Review Letters, 12014:141103, 2017-12-17, 2018-04. arXiv:1712.06041v2, doi:10.1103/PhysRevLett.120.141103. ↩
-
Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, and G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network. Frontiers of Physics, 155:54501, June 2020. arXiv:1712.00356, doi:10.1007/s11467-020-0966-4. ↩
-
S. J. Kapadia, T. Dent, and T. Dal Canton. Classifier for gravitational-wave inspiral signals in nonideal single-detector data. Physical Review D, 9610:104015, November 2017. Comment: 14 pages, 8 figures. arXiv:1709.02421v1, doi:10.1103/PhysRevD.96.104015. ↩
-
Zhoujian Cao, Wang He, and Jianyang Zhu. Initial study on the application of deep learning to the Gravitational Wave data analysis. Journal of Henan Normal University, 2018. doi:10.16366/j.cnki.1000-2367.2018.02.005. ↩
-
XiLong Fan, Jin Li, Xin Li, YuanHong Zhong, and JunWei Cao. Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors. Science China Physics, Mechanics & Astronomy, 626:969512, 2019. doi:10.1007/s11433-018-9321-7. ↩↩
-
Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, and Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network. Frontiers of Physics, 151:14601, November 2019. doi:10.1007/s11467-019-0936-x. ↩
-
Bai-Jiong Lin, Xiang-Ru Li, and Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks. Frontiers of Physics, 152:24602, 2019-10-23, 2019-11. arXiv:1910.10525v1, doi:10.1007/s11467-019-0935-y. ↩
-
Li-Li Wang, Jin Li, Nan Yang, and Xin Li. Identifying extra high frequency gravitational waves generated from oscillons with cuspy potentials using deep neural networks. New Journal of Physics, 214:043005, April 2019. arXiv:1910.07862v1, doi:10.1088/1367-2630/ab1310. ↩↩↩
-
Adam Rebei, E. A. Huerta, Sibo Wang, Sarah Habib, Roland Haas, Daniel Johnson, and Daniel George. Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers. Physical Review D, 1004:044025, August 2019. arXiv:1807.09787, doi:10.1103/PhysRevD.100.044025. ↩
-
Plamen G. Krastev. Real-time detection of gravitational waves from binary neutron stars using artificial neural networks. Physics Letters B, 803:135330, April 2020. arXiv:1908.03151v1, doi:10.1016/j.physletb.2020.135330. ↩
-
Antonis Mytidis, Athanasios Aris Panagopoulos, Orestis P. Panagopoulos, Andrew Miller, and Bernard Whiting. Sensitivity study using machine learning algorithms on simulated r-mode gravitational wave signals from newborn neutron stars. Physical Review D, 992:024024, January 2019. arXiv:1508.02064v2, doi:10.1103/PhysRevD.99.024024. ↩
-
Timothy Gebhard, Niki Kilbertus, Giambattista Parascandolo, Ian Harry, and Bernhard Schölkopf. Convwave: Searching for gravitational waves with fully convolutional neural nets. In Workshop on Deep Learning for Physical Sciences DLPS at the 31st Conference on Neural Information Processing Systems NIPS, 1–6. 2017. ↩
-
Timothy D. Gebhard, Niki Kilbertus, Ian Harry, and Bernhard Schölkopf. Convolutional neural networks: A magic bullet for gravitational-wave detection? Physical Review D, 1006:063015, September 2019. Github \href https://github.com/timothygebhard/magic-bullethttps://github.com/timothygebhard/magic-bullet. arXiv:1904.08693v1, doi:10.1103/PhysRevD.100.063015. ↩
-
Christopher Bresten and Jae-Hun Jung. Detection of gravitational waves using topological data analysis and convolutional neural network: An improved approach. October 2019. arXiv:1910.08245. ↩
-
Gerson R. Santos, Marcela P. Figueiredo, Antonio de Pádua Santos, Pavlos Protopapas, and Tiago A. E. Ferreira. Gravitational wave detection and information extraction via neural networks. arXiv preprint arXiv:2003.09995, 2020. arXiv:2003.09995. ↩
-
Roberto Corizzo, Michelangelo Ceci, Eftim Zdravevski, and Nathalie Japkowicz. Scalable auto-encoders for gravitational waves detection from time series data. Expert Systems with Applications, 151:113378, August 2020. doi:10.1016/j.eswa.2020.113378. ↩
-
MengNi Chen, YuanHong Zhong, Yi Feng, Di Li, and Jin Li. Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array. Science China Physics, Mechanics & Astronomy, 6312:129511, October 2020. arXiv:2003.13928v1, doi:10.1007/s11433-020-1609-y. ↩↩
-
Juan Pablo Marulanda, Camilo Santa, and Antonio Enea Romano. Deep learning merger masses estimation from gravitational waves signals in the frequency domain. Physics Letters B, 810:135790, November 2020. arXiv:2004.01050v1, doi:10.1016/j.physletb.2020.135790. ↩↩
-
He Wang, Shichao Wu, Zhoujian Cao, Xiaolin Liu, and Jian-Yang Zhu. Gravitational-wave signal recognition of LIGO data by deep learning. Physical Review D, 10110:104003, May 2020. arXiv:1909.13442, doi:10.1103/PhysRevD.101.104003. ↩
-
Kyungmin Kim, Tjonnie G. F. Li, Rico K. L. Lo, Surabhi Sachdev, and Robin S. H. Yuen. Ranking candidate signals with machine learning in low-latency searches for gravitational waves from compact binary mergers. Physical Review D, 101LIGO\-P1800253:083006, April 2020. arXiv:1912.07740, doi:10.1103/PhysRevD.101.083006. ↩
-
Marlin Benedikt Schäfer. Analysis of gravitational-wave signals from binary neutron star mergers using machine learning. Master’s thesis, Hannover : Gottfried Wilhelm Leibniz Universität / Hannover: Gottfried Wilhelm Leibniz Universität, 2019. doi:10.15488/7467. ↩↩
-
Marlin B. Schäfer, Frank Ohme, and Alexander H. Nitz. Detection of gravitational-wave signals from binary neutron star mergers using machine learning. Physical Review D, 1026:063015, 2020-06-02, 2020-06. arXiv:2006.01509v2, doi:10.1103/PhysRevD.102.063015. ↩
-
Yu-Chiung Lin and Jiun-Huei Proty Wu. Detection of gravitational waves using Bayesian neural networks. Physical Review D, 1036:063034, March 2021. arXiv:2007.04176, doi:10.1103/PhysRevD.103.063034. ↩
-
Yash Chauhan. Deep learning techniques to make gravitational wave detections from weak time-series data. arXiv preprint arXiv:2007.05889, 2021. arXiv:2007.05889. ↩
-
Shashwat Singh, Amitesh Singh, Ankul Prajapati, and Kamlesh N Pathak. Deep learning for estimating parameters of gravitational waves. Monthly Notices of the Royal Astronomical Society, 5081:1358–1370, November 2021. arXiv:2008.06550, doi:10.1093/mnras/stab2417. ↩
-
Manuel D. Morales, Javier M. Antelis, Claudia Moreno, and Alexander I. Nesterov. Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach. Sensors, September 2021. arXiv:2009.04088, doi:10.3390/s21093174. ↩
-
A. Caramete, A. I. Constantinescu, L. I. Caramete, T. Popescu, R. A. Balasov, D. Felea, M. V. Rusu, P. Stefanescu, and O. M. Tintareanu. Characterization of gravitational waves signals using neural networks. arXiv preprint arXiv:2009.06109, September 2020. arXiv:2009.06109. ↩
-
Rahul Nigam, Amit Mishra, and Pranath Reddy. Transient classification in low SNR gravitational wave data using deep learning. arXiv preprint arXiv:2009.12168, September 2020. arXiv:2009.12168. ↩
-
Shreejit Jadhav, Nikhil Mukund, Bhooshan Gadre, Sanjit Mitra, and Sheelu Abraham. Improving significance of binary black hole mergers in Advanced LIGO data using deep learning: Confirmation of GW151216. Physical Review D, 1046:064051, September 2021. arXiv:2010.08584, doi:10.1103/PhysRevD.104.064051. ↩
-
Kaze W. K. Wong, Ken K. Y. Ng, and Emanuele Berti. Gravitational-wave signal-to-noise interpolation via neural networks. arXiv preprint arXiv:2007.10350, July 2020. arXiv:2007.10350. ↩
-
Wei Wei and E.A. Huerta. Deep learning for gravitational wave forecasting of neutron star mergers. Physics Letters B, 816:136185, May 2021. arXiv:2010.09751, doi:10.1016/j.physletb.2021.136185. ↩
-
Miriam Cabero, Ashish Mahabal, and Jess McIver. GWSkyNet: A Real-time Classifier for Public Gravitational-wave Candidates. The Astrophysical Journal, 9041:L9, November 2020. arXiv:2010.11829, doi:10.3847/2041-8213/abc5b5. ↩
-
Kyungmin Kim, Joongoo Lee, Robin S. H. Yuen, Otto A. Hannuksela, and Tjonnie G. F. Li. Identification of Lensed Gravitational Waves with Deep Learning. The Astrophysical Journal, 9152:119, July 2021. arXiv:2010.12093, doi:10.3847/1538-4357/ac0143. ↩
-
Wei Wei, Asad Khan, E. A. Huerta, Xiaobo Huang, and Minyang Tian. Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers. Physics Letters B, 812:136029, January 2021. arXiv:2010.15845, doi:10.1016/j.physletb.2020.136029. ↩
-
Heming Xia, Lijing Shao, Junjie Zhao, and Zhoujian Cao. Improved deep learning techniques in gravitational-wave data analysis. Physical Review D, 1032:024040, January 2021. arXiv:2011.04418, doi:10.1103/PhysRevD.103.024040. ↩
-
João D Álvares, José A Font, Felipe F Freitas, Osvaldo G Freitas, António P Morais, Solange Nunes, Antonio Onofre, and Alejandro Torres-Forné. Exploring gravitational-wave detection and parameter inference using deep learning methods. Classical and Quantum Gravity, 3815:155010, July 2021. arXiv:2011.10425v1, doi:10.1088/1361-6382/ac0455. ↩↩
-
Wei Wei, E. A. Huerta, Mengshen Yun, Nicholas Loutrel, Md Arif Shaikh, Prayush Kumar, Roland Haas, and Volodymyr Kindratenko. Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence. The Astrophysical Journal, 9192:82, September 2021. arXiv:2012.03963, doi:10.3847/1538-4357/ac1121. ↩
-
A. Menéndez-Vázquez, M. Kolstein, M. Martínez, and \relax Ll. M. Mir. Searches for compact binary coalescence events using neural networks in the LIGO/Virgo second observation period. Physical Review D, 1036:062004, March 2021. arXiv:2012.10702v1, doi:10.1103/PhysRevD.103.062004. ↩
-
Plamen G. Krastev, Kiranjyot Gill, V. Ashley Villar, and Edo Berger. Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning. Physics Letters B, 815:136161, April 2021. arXiv:2012.13101v1, doi:10.1016/j.physletb.2021.136161. ↩
-
Hrithika Dodia. Detecting residues of cosmic events using residual neural network. arXiv preprint arXiv:2101.00195, January 2021. arXiv:2101.00195. ↩
-
Sumeet Kulkarni, Khun Sang Phukon, Amit Reza, Sukanta Bose, Anirban Dasgupta, Dilip Krishnaswamy, and Anand S. Sengupta. Random projections in gravitational wave searches of compact binaries. Physical Review D, 9910:101503, May 2019. arXiv:1801.04506, doi:10.1103/PhysRevD.99.101503. ↩
-
Amit Reza, Anirban Dasgupta, and Anand S. Sengupta. Random projections in gravitational-wave searches from compact binaries II: efficient reconstruction of the detection statistic. arXiv preprint arXiv:2101.03226, 2021. arXiv:2101.03226. ↩
-
Filip Morawski, Michał Bejger, Elena Cuoco, and Luigia Petre. Anomaly detection in gravitational waves data using convolutional autoencoders. Machine Learning: Science and Technology, 24:045014, March 2021. arXiv:2103.07688, doi:10.1088/2632-2153/abf3d0. ↩
-
Grégory Baltus, Justin Janquart, Melissa Lopez, Amit Reza, Sarah Caudill, and Jean-René Cudell. Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal. Physical Review D, 10310:102003, May 2021. arXiv:2104.00594, doi:10.1103/PhysRevD.103.102003. ↩
-
Jingkai Yan, Mariam Avagyan, Robert E. Colgan, Doğa Veske, Imre Bartos, John Wright, Zsuzsa Márka, and Szabolcs Márka. Generalized Approach to Matched Filtering using Neural Networks. Physical Review D, 1054:043006, February 2022. Comment: 18 pages, 13 figures. arXiv:2104.03961, doi:10.1103/PhysRevD.105.043006. ↩
-
Hang Yu, Rana X. Adhikari, Ryan Magee, Surabhi Sachdev, and Yanbei Chen. Early warning of coalescing neutron-star and neutron-star-black-hole binaries from the nonstationary noise background using neural networks. Physical Review D, 1046:062004, September 2021. arXiv:2104.09438, doi:10.1103/PhysRevD.104.062004. ↩
-
Siyu Fan, Yisen Wang, Yuan Luo, Alexander Schmitt, and Shenghua Yu. Improving gravitational wave detection with 2D convolutional neural networks. In 2020 25th International Conference on Pattern Recognition ICPR, 2020 25th International Conference on Pattern Recognition ICPR, 7103–7110. 2021. doi:10.1109/ICPR48806.2021.9412180. ↩
-
Grégory Baltus, Jean-René Cudell, Justin Janquart, Melissa Lopez, Sarah Caudill, and Amit Reza. Detecting the early inspiral of a gravitational-wave signal with convolutional neural networks. In 2021 International Conference on Content-Based Multimedia Indexing CBMI, 1–6. May 2021. arXiv:2105.13664, doi:10.1109/CBMI50038.2021.9461919. ↩
-
Marlin B. Schäfer, Onďrřej Zelenka, Alexander H. Nitz, Frank Ohme, and Bernd Brügmann. Training strategies for deep learning gravitational-wave searches. Physical Review D, 1054:043002, February 2022. arXiv:2106.03741, doi:10.1103/PhysRevD.105.043002. ↩
-
Srashti Goyal, Harikrishnan D., Shasvath J. Kapadia, and Parameswaran Ajith. Rapid identification of strongly lensed gravitational-wave events with machine learning. Physical Review D, 10412:124057, December 2021. arXiv:2106.12466, doi:10.1103/PhysRevD.104.124057. ↩
-
Hrithika Dodia, Himanshu Tandel, and Lynette D’Mello. SpecGrav – detection of gravitational waves using deep learning. arXiv preprint arXiv:2107.03607, July 2021. arXiv:2107.03607. ↩
-
K. S. van Lieshout. Sparse, Deep Neural Networks for the Early Detection of Gravitational Waves from Binary Neutron Stars. PhD thesis, Universiteit Utrecht, 2021. ↩
-
Eric A Moreno, Bartlomiej Borzyszkowski, Maurizio Pierini, Jean-Roch Vlimant, and Maria Spiropulu. Source-agnostic gravitational-wave detection with recurrent autoencoders. Machine Learning: Science and Technology, 32:025001, April 2022. arXiv:2107.12698, doi:10.1088/2632-2153/ac5435. ↩↩
-
Marlin B. Schäfer and Alexander H. Nitz. From one to many: A deep learning coincident gravitational-wave search. Physical Review D, 1054:043003, February 2022. arXiv:2108.10715, doi:10.1103/PhysRevD.105.043003. ↩
-
Chetan Verma, Amit Reza, Dilip Krishnaswamy, Sarah Caudill, and Gurudatt Gaur. Employing deep learning for detection of gravitational waves from compact binary coalescences. AIP Conference Proceedings, 25551:020010, October 2022. doi: 10.1063/5.0108682. arXiv:2110.01883, doi:10.1063/5.0108682. ↩
-
Elena Cuoco, Barbara Patricelli, Alberto Iess, and Filip Morawski. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers. Universe, October 2021. arXiv:2110.09833, doi:10.3390/universe7110394. ↩
-
Thomas C. Abbott, Eitan Buffaz, Nicholas Vieira, Miriam Cabero, Daryl Haggard, Ashish Mahabal, and Jess McIver. GWSkyNet-Multi: A Machine-learning Multiclass Classifier for LIGO–Virgo Public Alerts. The Astrophysical Journal, 9272:232, March 2022. arXiv:2111.04015, doi:10.3847/1538-4357/ac5019. ↩
-
Julian Ding, Raymond Ng, and Jess McIver. UniMAP: Model-free detection of unclassified noise transients in LIGO-Virgo data using the Temporal Outlier Factor. arXiv preprint arXiv:2111.09465, November 2021. arXiv:2111.09465. ↩
-
Wen-Hong Ruan, He Wang, Chang Liu, and Zong-Kuan Guo. Rapid search for massive black hole binary coalescences using deep learning. Physics Letters B, 841:137904, June 2023. arXiv:2111.14546, doi:10.1016/j.physletb.2023.137904. ↩
-
Nikola Lopac, Franko Hržić, Irena Petrijevcanin Vuksanović, and Jonatan Lerga. Detection of non-stationary GW signals in high noise from cohen’s class of Time–Frequency representations using deep learning. IEEE access : practical innovations, open solutions, 10:2408–2428, 2022. doi:10.1109/ACCESS.2021.3139850. ↩
-
Damodar Dahal. Application of common spatial patterns in gravitational waves detection. arXiv preprint arXiv:2201.04086, January 2022. arXiv:2201.04086. ↩
-
Pranshu Chaturvedi, Asad Khan, Minyang Tian, E. A. Huerta, and Huihuo Zheng. Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale. Frontiers in Artificial Intelligence, 2022. arXiv:2201.11133. ↩
-
Xue-Ting Zhang, Chris Messenger, Natalia Korsakova, Man Leong Chan, Yi-Ming Hu, and Jian-dong Zhang. Detecting gravitational waves from extreme mass ratio inspirals using convolutional neural networks. Physical Review D, 10512:123027, June 2022. Comment: 12 pages, 4 figures \textbf Contents \begin itemize \item \href zotero://open-pdf/0_RRKIEQZU/1Abstract \item \href zotero://open-pdf/0_RRKIEQZU/1I Introduction \item \href zotero://open-pdf/0_RRKIEQZU/2II Basics of EMRI detection \begin itemize \item \href zotero://open-pdf/0_RRKIEQZU/2A Basic astronomy of EMRIs \item \href zotero://open-pdf/0_RRKIEQZU/2B Waveform models of EMRIs \item \href zotero://open-pdf/0_RRKIEQZU/3C The TianQin mission \end itemize \item \href zotero://open-pdf/0_RRKIEQZU/4III convolutional neural networks for detection \begin itemize \item \href zotero://open-pdf/0_RRKIEQZU/4A Data preparation \item \href zotero://open-pdf/0_RRKIEQZU/6B Mathematical model \item \href zotero://open-pdf/0_RRKIEQZU/6C The CNN architecture \end itemize \item \href zotero://open-pdf/0_RRKIEQZU/6IV Search procedure \begin itemize \item \href zotero://open-pdf/0_RRKIEQZU/6A Training phase \item \href zotero://open-pdf/0_RRKIEQZU/7B Testing phase \end itemize \item \href zotero://open-pdf/0_RRKIEQZU/7V Results \begin itemize \item \href zotero://open-pdf/0_RRKIEQZU/7A Validity \item \href zotero://open-pdf/0_RRKIEQZU/8B Sensitivity \end itemize \item \href zotero://open-pdf/0_RRKIEQZU/10VI conclusions and Future works \item \href zotero://open-pdf/0_RRKIEQZU/10VII Acknowledgments \item \href zotero://open-pdf/0_RRKIEQZU/10 References \end itemize. arXiv:2202.07158, doi:10.1103/PhysRevD.105.123027. ↩
-
Mohammadtaher Safarzadeh, Asad Khan, E. A. Huerta, and Martin Wattenberg. Interpreting a Machine Learning Model for Detecting Gravitational Waves. arXiv:2202.07399 [astro-ph, physics:gr-qc], February 2022. Comment: 19 pages, to be submitted, comments are welcome. Movies based on this work can be accessed via: https://www.youtube.com/watch?v=SXFGMOtJwn0 https://www.youtube.com/watch?v=itVCj9gpmAs. arXiv:2202.07399. ↩
-
Sunil Choudhary, Anupreeta More, Sudhagar Suyamprakasam, and Sukanta Bose. Deep learning network to distinguish binary black hole signals from short-duration noise transients. Physical Review D, 1072:024030, January 2023. Comment: 11 pages, 8 figures and 2 tables. Reviewed by LIGO Scientific Collaboration LSC with preprint number LIGO-P2100485. arXiv:2202.08671, doi:10.1103/PhysRevD.107.024030. ↩
-
Connor McIsaac and Ian Harry. Using machine learning to auto-tune chi-squared tests for gravitational wave searches. arXiv:2203.03449 [astro-ph, physics:gr-qc], March 2022. Comment: 10 pages, 5 figures. Supplementary data: https://icg-gravwaves.github.io/chisqnet/. arXiv:2203.03449. ↩
-
Meng-Qin Jiang, Nan Yang, and Jin Li. Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network. Frontiers of Physics, 175:54501, March 2022. doi:10.1007/s11467-021-1150-1. ↩
-
Grégory Baltus, Justin Janquart, Melissa Lopez, Harsh Narola, and Jean-René Cudell. Convolutional neural network for gravitational-wave early alert: Going down in frequency. Physical Review D, 106arXiv:2205\.04750:042002, August 2022. Comment: 11 pages, 10 figures. arXiv:2205.04750, doi:10.1103/PhysRevD.106.042002. ↩
-
Kyungmin Kim, Joongoo Lee, Otto A. Hannuksela, and Tjonnie G. F. Li. Deep Learning–based search for microlensing signature from binary black hole events in GWTC-1 and -2. The Astrophysical Journal, 938arXiv:2206\.08234:157, October 2022. Comment: 11 pages, 6 figures, 4 tables. arXiv:2206.08234, doi:10.3847/1538-4357/ac92f3. ↩
-
Chetan Verma, Amit Reza, Gurudatt Gaur, Dilip Krishnaswamy, and Sarah Caudill. Can Convolution Neural Networks Be Used for Detection of Gravitational Waves from Precessing Black Hole Systems? June 2022. arXiv:2206.12673. ↩
-
João Aveiro, Felipe F. Freitas, Márcio Ferreira, Antonio Onofre, Constançça Providência, Gonççalo Gonççalves, and José A. Font. Identification of binary neutron star mergers in gravitational-wave data using object-detection machine learning models. Physical Review D, 1068:084059, October 2022. Comment: 11 pages, 9 figures. arXiv:2207.00591, doi:10.1103/PhysRevD.106.084059. ↩
-
Michael Andrews, Manfred Paulini, Luke Sellers, Alexey Bobrick, Gianni Martire, and Haydn Vestal. DeepSNR: A deep learning foundation for offline gravitational wave detection. July 2022. Comment: 16 pages, 6 figures. arXiv:2207.04749. ↩
-
Tianyu Zhao, Ruoxi Lyu, He Wang, Zhoujian Cao, and Zhixiang Ren. Space-based gravitational wave signal detection and extraction with deep neural network. Communications Physics, 61:212, August 2023. Comment: 17 pages, 6 figures. arXiv:2207.07414, doi:10.1038/s42005-023-01334-6. ↩
-
Jingkai Yan, Robert Colgan, John Wright, Zsuzsa Márka, Imre Bartos, and Szabolcs Márka. Boosting the Efficiency of Parametric Detection with Hierarchical Neural Networks. July 2022. arXiv:2207.11583. ↩
-
Kritti Sharma, Koustav Chandra, and Archana Pai. Fishing massive black hole binaries with THAMES. August 2022. Comment: 21 pages, 19 figures \href https://dcc.ligo.org//LIGO-G2201083https://dcc.ligo.org//LIGO-G2201083. arXiv:2208.02545. ↩
-
Gerson R. Santos, Antonio de Pádua Santos, Pavlos Protopapas, and Tiago A.E. Ferreira. Gravitational wave signal recognition and ring-down time estimation via Artificial Neural Networks. Expert Systems with Applications, 207:117931, November 2022. doi:10.1016/j.eswa.2022.117931. ↩
-
Francesco Pio Barone, Daniele Dell’Aquila, and Marco Russo. A novel multi-layer modular approach for real-time fuzzy-identification of gravitational-wave signals. Machine Learning: Science and Technology, 44:045054, December 2023. arXiv:2206.06004, doi:10.1088/2632-2153/ad1200. ↩
-
Marlin B. Schäfer, Onďrřej Zelenka, Alexander H. Nitz, He Wang, Shichao Wu, Zong-Kuan Guo, Zhoujian Cao, Zhixiang Ren, Paraskevi Nousi, Nikolaos Stergioulas, Panagiotis Iosif, Alexandra E. Koloniari, Anastasios Tefas, Nikolaos Passalis, Francesco Salemi, Gabriele Vedovato, Sergey Klimenko, Tanmaya Mishra, Bernd Brügmann, Elena Cuoco, E. A. Huerta, Chris Messenger, and Frank Ohme. First machine learning gravitational-wave search mock data challenge. Physical Review D, 1072:023021, January 2023. Comment: 25 pages, 6 figures, 4 tables, additional material available at https://github.com/gwastro/ml-mock-data-challenge-1. arXiv:2209.11146, doi:10.1103/PhysRevD.107.023021. ↩
-
Grégory Baltus. A Machine Learning Approach to the Search for Gravitational Waves Emitted by Light Systems. PhD thesis, ULiège - Université de Liège [Sciences], September 2022. ↩
-
Hao Zhang, Zhijun Zhu, Minglei Fu, Minchao Hu, Kezhen Rong, Dmytro Lande, Dmytro Manko, and Zaher Mundher Yaseen. Gravitational Wave-Signal Recognition Model Based on Fourier Transform and Convolutional Neural Network. Computational Intelligence and Neuroscience, 2022:5892188, September 2022. doi:10.1155/2022/5892188. ↩
-
Charles Badger, Katarina Martinovic, Alejandro Torres-Forné, Mairi Sakellariadou, and José A. Font. Dictionary learning: A novel approach to detecting binary black holes in the presence of galactic noise with LISA. Physical Review Letters, 1309:091401, February 2023. Comment: 6 pages, 3 figures. arXiv:2210.06194, doi:10.1103/PhysRevLett.130.091401. ↩
-
Richard Qiu, Plamen G. Krastev, Kiranjyot Gill, and Edo Berger. Deep learning detection and classification of gravitational waves from neutron star-black hole mergers. Physics Letters B, 840:137850, May 2023. Comment: 8 pages, 5 figures. arXiv admin note: text overlap with arXiv:2012.13101. arXiv:2210.15888, doi:10.1016/j.physletb.2023.137850. ↩
-
Paraskevi Nousi, Alexandra E. Koloniari, Nikolaos Passalis, Panagiotis Iosif, Nikolaos Stergioulas, and Anastasios Tefas. Deep residual networks for gravitational wave detection. Physical Review D, 1082:024022, July 2023. Comment: 10 pages, 11 figures, code publicly available at https://github.com/vivinousi/gw-detection-deep-learning. arXiv:2211.01520, doi:10.1103/PhysRevD.108.024022. ↩
-
Kyungmin Kim. Search for Microlensing Signature in Gravitational Waves from Binary Black Hole Events. October 2022. Comment: 2 pages, 1 figure, submitted for the proceeding of the IAU Symposium 368: Machine Learning in Astronomy. arXiv:2211.02655. ↩
-
Rui-Qing Yan, Wei Liu, Zong-Yao Yin, Rong Ma, Si-Ying Chen, Dan Hu, Dan Wu, and Xian-Chuan Yu. Gravitational Wave Detection Based on Squeeze-and-excitation Shrinkage Networks and Multiple Detector Coherent SNR. Research in Astronomy and Astrophysics, 2211:115008, October 2022. doi:10.1088/1674-4527/ac846c. ↩
-
Wathela Alhassan, T Bulik, and M Suchenek. Detection of Einstein Telescope gravitational wave signals from binary black holes using deep learning. Monthly Notices of the Royal Astronomical Society, pages stac3797, December 2022. arXiv:2211.13789, doi:10.1093/mnras/stac3797. ↩
-
Letian Jiang and Yuan Luo. Convolutional transformer for fast and accurate gravitational wave detection. In 2022 26th International Conference on Pattern Recognition ICPR, 46–53. 2022. doi:10.1109/ICPR56361.2022.9956104. ↩
-
Yu-Tong Wang, Hao-Yang Liu, and Yun-Song Piao. Self-supervised learning for gravitational wave signal identification. February 2023. Comment: 8 pages, 6 figures. arXiv:2302.00295. ↩
-
Adhrit Ravichandran, Aditya Vijaykumar, Shasvath J. Kapadia, and Prayush Kumar. Rapid Identification and Classification of Eccentric Gravitational Wave Inspirals with Machine Learning. February 2023. Comment: 18 pages, 15 figures, 2 tables. arXiv:2302.00666. ↩
-
Abdullah Abdul Sattar Shaikh, Abhra Ghosh, Atharva Chidambar Joshi, Chaudhary Shivam Akhilesh, and S. K. Savitha. Optimizing large gravitational-wave classifier through a custom cross-system mirrored strategy approach. In 2022 IEEE International Conference on Data Science and Information System ICDSIS, 1–7. 2022. doi:10.1109/ICDSIS55133.2022.9915926. ↩
-
Shang-Jie Jin, Yu-Xin Wang, Tian-Yang Sun, Jing-Fei Zhang, and Xin Zhang. Rapid identification of time-frequency domain gravitational wave signals from binary black holes using deep learning. May 2023. Comment: 11 pages, 9 figures. arXiv:2305.19003. ↩
-
Shreejit Jadhav, Mihir Shrivastava, and Sanjit Mitra. Towards a robust and reliable deep learning approach for detection of compact binary mergers in gravitational wave data. Machine Learning: Science and Technology, 44:045028, November 2023. Comment: 22 pages, 21 figures. arXiv:2306.11797, doi:10.1088/2632-2153/ad0938. ↩
-
Minyang Tian, E. A. Huerta, and Huihuo Zheng. Physics-inspired spatiotemporal-graph AI ensemble for gravitational wave detection. June 2023. Comment: 12 pages, 5 figures, and 2 tables. arXiv:2306.15728. ↩
-
Souradeep Pal and K. Rajesh Nayak. Swarm-intelligent search for gravitational waves from eccentric binary mergers. July 2023. arXiv:2307.03736. ↩
-
A. Trovato, É Chassande-Mottin, M. Bejger, R. Flamary, and N. Courty. Neural network time-series classifiers for gravitational-wave searches in single-detector periods. July 2023. Comment: 29 pages, 11 figures, submitted to CQG. arXiv:2307.09268. ↩
-
Suyog Garg, Seiya Sasaoka, Diego Sebastian Dominguez, Yilun Hou, Naoki Koyama, Kentaro Somiya, Hirotaka Takahashi, and Masatake Ohashi. Comparison of training methods for convolutional neural network model for gravitational-wave detection from neutron star-black hole binaries. PoS, ICRC2023:1536, 2023. Comment: Fixed Fig. 7 not being rendered. arXiv:2307.16668, doi:10.22323/1.444.1536. ↩
-
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, M. A. Aloy, P. A. Altin, A. Amato, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, S. Antier, S. Appert, K. Arai, M. C. Araya, J. S. Areeda, M. Arène, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, V. Avendano, A. Avila-Alvarez, S. Babak, P. Bacon, F. Badaracco, M. K. M. Bader, S. Bae, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, S. Banagiri, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, K. Barkett, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, M. Bazzan, B. Bécsy, M. Bejger, I. Belahcene, A. S. Bell, D. Beniwal, B. K. Berger, G. Bergmann, S. Bernuzzi, J. J. Bero, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, J. Bidler, I. A. Bilenko, S. A. Bilgili, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, S. Biscoveanu, A. Bisht, M. Bitossi, M. A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, N. Bode, M. Boer, Y. Boetzel, G. Bogaert, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, C. D. Booth, R. Bork, V. Boschi, S. Bose, K. Bossie, V. Bossilkov, J. Bosveld, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, M. Branchesi, J. E. Brau, T. Briant, J. H. Briggs, F. Brighenti, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. D. Brown, S. Brunett, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, M. J. Bustamante Rosell, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, W. A. Campbell, M. Canepa, K. C. Cannon, H. Cao, J. Cao, E. Capocasa, F. Carbognani, S. Caride, M. F. Carney, G. Carullo, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, G. Cerretani, E. Cesarini, O. Chaibi, K. Chakravarti, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, K. Chatziioannou, B. D. Cheeseboro, H. Y. Chen, X. Chen, Y. Chen, H.-P. Cheng, C. K. Cheong, H. Y. Chia, A. Chincarini, A. Chiummo, G. Cho, H. S. Cho, M. Cho, N. Christensen, Q. Chu, S. Chua, K. W. Chung, S. Chung, G. Ciani, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, J. A. Clark, P. Clearwater, F. Cleva, C. Cocchieri, E. Coccia, P.-F. Cohadon, D. Cohen, R. Colgan, M. Colleoni, C. G. Collette, C. Collins, L. R. Cominsky, M. Constancio, L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, K. R. Corley, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, J. Cripe, M. Croquette, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, G. Dálya, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, D. Davis, E. J. Daw, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, L. M. DeMarchi, N. Demos, T. Dent, R. De Pietri, J. Derby, R. De Rosa, C. De Rossi, R. DeSalvo, O. de Varona, S. Dhurandhar, M. C. Díaz, T. Dietrich, L. Di Fiore, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. Dmitriev, Z. Doctor, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, T. P. Downes, M. Drago, J. C. Driggers, Z. Du, J.-G. Ducoin, P. Dupej, S. E. Dwyer, P. J. Easter, T. B. Edo, M. C. Edwards, A. Effler, P. Ehrens, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, R. C. Essick, H. Estelles, D. Estevez, Z. B. Etienne, T. Etzel, M. Evans, T. M. Evans, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. M. Farr, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, C. Fee, J. Feicht, M. M. Fejer, F. Feng, A. Fernandez-Galiana, I. Ferrante, E. C. Ferreira, T. A. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, M. Fishbach, R. P. Fisher, J. M. Fishner, M. Fitz-Axen, R. Flaminio, M. Fletcher, E. Flynn, H. Fong, J. A. Font, P. W. F. Forsyth, J.-D. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, L. Gammaitoni, M. R. Ganija, S. G. Gaonkar, A. Garcia, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, G. Gaur, V. Gayathri, G. Gemme, E. Genin, A. Gennai, D. George, J. George, L. Gergely, V. Germain, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, S. Ghosh, B. Giacomazzo, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, G. Giordano, L. Glover, P. Godwin, E. Goetz, R. Goetz, B. Goncharov, G. González, J. M. Gonzalez Castro, A. Gopakumar, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, E. M. Gretarsson, P. Groot, H. Grote, S. Grunewald, P. Gruning, G. M. Guidi, H. K. Gulati, Y. Guo, A. Gupta, M. K. Gupta, E. K. Gustafson, R. Gustafson, L. Haegel, O. Halim, B. R. Hall, E. D. Hall, E. Z. Hamilton, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, J. Hanson, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, C.-J. Haster, K. Haughian, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, A. W. Heptonstall, Francisco Hernandez Vivanco, M. Heurs, S. Hild, T. Hinderer, D. Hoak, S. Hochheim, D. Hofman, A. M. Holgado, N. A. Holland, K. Holt, D. E. Holz, P. Hopkins, C. Horst, J. Hough, E. J. Howell, C. G. Hoy, A. Hreibi, Y. Huang, E. A. Huerta, D. Huet, B. Hughey, M. Hulko, S. Husa, S. H. Huttner, T. Huynh-Dinh, B. Idzkowski, A. Iess, C. Ingram, R. Inta, G. Intini, B. Irwin, H. N. Isa, J.-M. Isac, M. Isi, B. R. Iyer, K. Izumi, T. Jacqmin, S. J. Jadhav, K. Jani, N. N. Janthalur, P. Jaranowski, A. C. Jenkins, J. Jiang, D. S. Johnson, N. K. Johnson-McDaniel, A. W. Jones, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, J. Junker, C. V. Kalaghatgi, V. Kalogera, B. Kamai, S. Kandhasamy, G. Kang, J. B. Kanner, S. J. Kapadia, S. Karki, K. S. Karvinen, R. Kashyap, M. Kasprzack, S. Katsanevas, E. Katsavounidis, W. Katzman, S. Kaufer, K. Kawabe, N. V. Keerthana, F. Kéfélian, D. Keitel, R. Kennedy, J. S. Key, F. Y. Khalili, H. Khan, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, M. Khursheed, N. Kijbunchoo, Chunglee Kim, J. C. Kim, K. Kim, W. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, E. J. King, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, L. Kleybolte, J. H. Klika, S. Klimenko, T. D. Knowles, P. Koch, S. M. Koehlenbeck, G. Koekoek, S. Koley, V. Kondrashov, A. Kontos, N. Koper, M. Korobko, W. Z. Korth, I. Kowalska, D. B. Kozak, V. Kringel, N. Krishnendu, A. Królak, G. Kuehn, A. Kumar, P. Kumar, R. Kumar, S. Kumar, L. Kuo, A. Kutynia, S. Kwang, B. D. Lackey, K. H. Lai, T. L. Lam, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, R. K. Lanza, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, J. Lehmann, A. Lenon, N. Leroy, N. Letendre, Y. Levin, J. Li, K. J. L. Li, T. G. F. Li, X. Li, F. Lin, F. Linde, S. D. Linker, T. B. Littenberg, J. Liu, X. Liu, R. K. L. Lo, N. A. Lockerbie, L. T. London, A. Longo, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, M. E. Lower, H. Lück, D. Lumaca, A. P. Lundgren, R. Lynch, Y. Ma, R. Macas, S. Macfoy, M. MacInnis, D. M. Macleod, A. Macquet, F. Magaña-Sandoval, L. Magaña Zertuche, R. M. Magee, E. Majorana, I. Maksimovic, A. Malik, N. Man, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, F. Marion, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, D. V. Martynov, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, J. J. McCann, R. McCarthy, D. E. McClelland, S. McCormick, L. McCuller, S. C. McGuire, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, G. D. Meadors, M. Mehmet, A. K. Mehta, J. Meidam, A. Melatos, G. Mendell, R. A. Mercer, L. Mereni, E. L. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, R. Metzdorff, P. M. Meyers, H. Miao, C. Michel, H. Middleton, E. E. Mikhailov, L. Milano, A. L. Miller, A. Miller, M. Millhouse, J. C. Mills, M. C. Milovich-Goff, O. Minazzoli, Y. Minenkov, A. Mishkin, C. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, G. Mo, D. Moffa, K. Mogushi, S. R. P. Mohapatra, M. Montani, C. J. Moore, D. Moraru, G. Moreno, S. Morisaki, B. Mours, C. M. Mow-Lowry, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, M. Muratore, P. G. Murray, A. Nagar, I. Nardecchia, L. Naticchioni, R. K. Nayak, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, A. Neunzert, K. Y. Ng, S. Ng, P. Nguyen, D. Nichols, A. B. Nielsen, S. Nissanke, A. Nitz, F. Nocera, C. North, L. K. Nuttall, M. Obergaulinger, J. Oberling, B. D. O’Brien, G. D. O’Dea, G. H. Ogin, J. J. Oh, S. H. Oh, F. Ohme, H. Ohta, M. A. Okada, M. Oliver, P. Oppermann, Richard J. Oram, B. O’Reilly, R. G. Ormiston, L. F. Ortega, R. O’Shaughnessy, S. Ossokine, D. J. Ottaway, H. Overmier, B. J. Owen, A. E. Pace, G. Pagano, M. A. Page, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, Huang-Wei Pan, B. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, A. Parida, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patil, B. Patricelli, B. L. Pearlstone, C. Pedersen, M. Pedraza, R. Pedurand, A. Pele, S. Penn, A. Perego, C. J. Perez, A. Perreca, H. P. Pfeiffer, M. Phelps, K. S. Phukon, O. J. Piccinni, M. Pichot, F. Piergiovanni, G. Pillant, L. Pinard, M. Pirello, M. Pitkin, R. Poggiani, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, J. Powell, A. K. Prajapati, J. Prasad, K. Prasai, R. Prasanna, G. Pratten, T. Prestegard, S. Privitera, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, P. J. Quinonez, E. A. Quintero, R. Quitzow-James, F. J. Raab, H. Radkins, N. Radulescu, P. Raffai, S. Raja, C. Rajan, B. Rajbhandari, M. Rakhmanov, K. E. Ramirez, A. Ramos-Buades, Javed Rana, K. Rao, P. Rapagnani, V. Raymond, M. Razzano, J. Read, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, W. Ren, F. Ricci, C. J. Richardson, J. W. Richardson, P. M. Ricker, G. M. Riemenschneider, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, M. Romanelli, R. Romano, C. L. Romel, J. H. Romie, K. Rose, D. Rosińńska, S. G. Rosofsky, M. P. Ross, S. Rowan, A. Rüdiger, P. Ruggi, G. Rutins, K. Ryan, S. Sachdev, T. Sadecki, M. Sakellariadou, O. Salafia, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, L. Sammut, E. J. Sanchez, L. E. Sanchez, N. Sanchis-Gual, V. Sandberg, J. R. Sanders, K. A. Santiago, N. Sarin, B. Sassolas, B. S. Sathyaprakash, P. R. Saulson, O. Sauter, R. L. Savage, P. Schale, M. Scheel, J. Scheuer, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, B. W. Schulte, B. F. Schutz, S. G. Schwalbe, J. Scott, S. M. Scott, E. Seidel, D. Sellers, A. S. Sengupta, N. Sennett, D. Sentenac, V. Sequino, A. Sergeev, Y. Setyawati, D. A. Shaddock, T. Shaffer, M. S. Shahriar, M. B. Shaner, L. Shao, P. Sharma, P. Shawhan, H. Shen, R. Shink, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, K. Siellez, M. Sieniawska, D. Sigg, A. D. Silva, L. P. Singer, N. Singh, A. Singhal, A. M. Sintes, S. Sitmukhambetov, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. R. Smith, R. J. E. Smith, S. Somala, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, E. Sowell, A. P. Spencer, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, M. Standke, D. A. Steer, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, S. P. Stevenson, D. Stocks, R. Stone, D. J. Stops, K. A. Strain, G. Stratta, S. E. Strigin, A. Strunk, R. Sturani, A. L. Stuver, V. Sudhir, T. Z. Summerscales, L. Sun, S. Sunil, J. Suresh, P. J. Sutton, B. L. Swinkels, M. J. Szczepańńczyk, M. Tacca, S. C. Tait, C. Talbot, D. Talukder, D. B. Tanner, M. Tápai, A. Taracchini, J. D. Tasson, R. Taylor, F. Thies, M. Thomas, P. Thomas, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, K. Toland, M. Tonelli, Z. Tornasi, A. Torres-Forné, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, M. C. Tringali, A. Trovato, L. Trozzo, R. Trudeau, K. W. Tsang, M. Tse, R. Tso, L. Tsukada, D. Tsuna, D. Tuyenbayev, K. Ueno, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, J. V. van Heijningen, L. van der Schaaf, A. A. van Veggel, M. Vardaro, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, D. Verkindt, F. Vetrano, A. Viceré, A. D. Viets, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, R. Walet, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, J. Z. Wang, W. H. Wang, Y. F. Wang, R. L. Ward, Z. A. Warden, J. Warner, M. Was, J. Watchi, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, F. Wellmann, L. Wen, E. K. Wessel, P. Weßels, J. W. Westhouse, K. Wette, J. T. Whelan, L. V. White, B. F. Whiting, C. Whittle, D. M. Wilken, D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Woehler, J. K. Wofford, J. Worden, J. L. Wright, D. S. Wu, D. M. Wysocki, L. Xiao, H. Yamamoto, C. C. Yancey, L. Yang, M. J. Yap, M. Yazback, D. W. Yeeles, Hang Yu, Haocun Yu, S. H. R. Yuen, M. Yvert, A. K. Zadrożżny, M. Zanolin, F. Zappa, T. Zelenova, J.-P. Zendri, M. Zevin, J. Zhang, L. Zhang, T. Zhang, C. Zhao, M. Zhou, Z. Zhou, X. J. Zhu, A. B. Zimmerman, Y. Zlochower, M. E. Zucker, and J. Zweizig. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Physical Review X, 93:031040, September 2019. Comment: Total: 49 pages and 17 figures. Strain data are available from the Gravitational Wave Open Science Center at https://doi.org/10.7935/82H3-HH23. Figures, data behind the figures, including posterior samples, are available from https://dcc.ligo.org/LIGO-P1800307/public. arXiv:1811.12907, doi:10.1103/PhysRevX.9.031040. ↩
-
John Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 14:833–859, December 2006. doi:10.1214/06-BA127. ↩
-
Philip Graff, Farhan Feroz, Michael P. Hobson, and Anthony Lasenby. BAMBI: blind accelerated multimodal Bayesian inference. Monthly Notices of the Royal Astronomical Society, 4211:169–180, March 2012. arXiv:1110.2997, doi:10.1111/j.1365-2966.2011.20288.x. ↩
-
Philip B Graff. Bayesian Methods for Gravitational Waves and Neural Networks. PhD thesis, University of Cambridge, 2012. doi:10.17863/CAM.969. ↩
-
Alvin J. K. Chua and Michele Vallisneri. Learning bayesian posteriors with neural networks for gravitational-wave inference. Physical Review Letters, 1244:041102, January 2020. arXiv:1909.05966, doi:10.1103/PhysRevLett.124.041102. ↩
-
M. Carrillo, M. Gracia-Linares, J. A. González, and F. S. Guzmán. Parameter estimates in binary black hole collisions using neural networks. General Relativity and Gravitation, 4810:141, September 2016. doi:10.1007/s10714-016-2136-0. ↩
-
M. Carrillo, M. Gracia-Linares, J. A. González, and F. S. Guzmán. One parameter binary black hole inverse problem using a sparse training set. International Journal of Modern Physics D, 2704:1850043, March 2018. doi:10.1142/S0218271818500438. ↩
-
Chayan Chatterjee, Linqing Wen, Kevin Vinsen, Manoj Kovalam, and Amitava Datta. Using deep learning to localize gravitational wave sources. Physical Review D, 10010:103025, November 2019. arXiv:1909.06367, doi:10.1103/PhysRevD.100.103025. ↩
-
Takahiro S. Yamamoto and Takahiro Tanaka. Use of conditional variational auto encoder to analyze ringdown gravitational waves. arXiv preprint arXiv:2007.10350, 2020. arXiv:2007.10350. ↩
-
L Haegel and S Husa. Predicting the properties of black-hole merger remnants with deep neural networks. Classical and Quantum Gravity, 3713:135005, June 2020. arXiv:1911.01496, doi:10.1088/1361-6382/ab905c. ↩
-
Enis Belgacem, Stefano Foffa, Michele Maggiore, and Tao Yang. Gaussian processes reconstruction of modified gravitational wave propagation. Physical Review D, 1016:063505, March 2020. arXiv:1911.11497, doi:10.1103/PhysRevD.101.063505. ↩
-
Asad Khan, E.A. Huerta, and Arnav Das. Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers. Physics Letters B, 808:135628, September 2020. arXiv:2004.09524, doi:10.1016/j.physletb.2020.135628. ↩
-
Hiroyuki Nakano, Tatsuya Narikawa, Ken-ichi Oohara, Kazuki Sakai, Hisa-aki Shinkai, Hirotaka Takahashi, Takahiro Tanaka, Nami Uchikata, Shun Yamamoto, and Takahiro S. Yamamoto. Comparison of various methods to extract ringdown frequency from gravitational wave data. Physical Review D, 9912:124032, June 2019. arXiv:1811.06443v2, doi:10.1103/PhysRevD.99.124032. ↩
-
William J. Engels, Raymond Frey, and Christian D. Ott. Multivariate regression analysis of gravitational waves from rotating core collapse. Physical Review D, 9012:124026, December 2014. arXiv:1406.1164, doi:10.1103/PhysRevD.90.124026. ↩
-
Francisco Hernandez Vivanco, Rory Smith, Eric Thrane, and Paul D Lasky. A scalable random forest regressor for combining neutron-star equation of state measurements: a case study with GW170817 and GW190425. Monthly Notices of the Royal Astronomical Society, 4994:5972–5977, November 2020. arXiv:2008.05627, doi:10.1093/mnras/staa3243. ↩
-
Arnaud Delaunoy. Lightning gravitational wave parameter inference through neural amortization. Master’s thesis, GRAPPA Institute, University of Amsterdam, September 2020. ↩
-
Costantino Pacilio. Multioutput regression of noisy time series using convolutional neural networks with applications to gravitational waves. Master’s thesis, SISSA, 2019. ↩
-
Arnaud Delaunoy, Antoine Wehenkel, Tanja Hinderer, Samaya Nissanke, Christoph Weniger, Andrew R. Williamson, and Gillesa Louppe. Lightning-fast gravitational wave parameter inference through neural amortization. arXiv preprint arXiv:2010.12931, October 2020. arXiv:2010.12931. ↩
-
Niall Jeffrey and Benjamin D. Wandelt. Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks. arXiv preprint arXiv:2011.05991, November 2020. arXiv:2011.05991. ↩
-
Michael J. Williams, John Veitch, and Chris Messenger. Nested sampling with normalizing flows for gravitational-wave inference. Physical Review D, 10310:103006, May 2021. Binder notebook: \href https://bndr.it/6782phttps://bndr.it/6782p code available at \href https://doi.org/10.5281/zenodo.4550693this https URL \href https://github.com/mj-will/nessaihttps://github.com/mj-will/nessai. arXiv:2102.11056, doi:10.1103/PhysRevD.103.103006. ↩
-
Virginia D’Emilio, Rhys Green, and Vivien Raymond. Density estimation with Gaussian processes for gravitational wave posteriors. Monthly Notices of the Royal Astronomical Society, 5082:2090–2097, December 2021. arXiv:2104.05357, doi:10.1093/mnras/stab2623. ↩
-
Han-Shiang Kuo and Feng-Li Lin. Conditional noise deep learning for parameter estimation of gravitational wave events. arXiv preprint arXiv:2107.10730, July 2021. arXiv:2107.10730. ↩
-
Alec Gunny, Dylan Rankin, Jeffrey Krupa, Muhammed Saleem, Tri Nguyen, Michael Coughlin, Philip Harris, Erik Katsavounidis, Steven Timm, and Burt Holzman. Hardware-accelerated inference for real-time gravitational-wave astronomy. arXiv preprint arXiv:2108.12430, 2021. arXiv:2108.12430. ↩
-
François Rozet and Gilles Louppe. Arbitrary marginal neural ratio estimation for simulation-based inference. arXiv preprint arXiv:2110.00449, October 2021. arXiv:2110.00449. ↩
-
Blenda Ulima R. C. Guedes, Antonio de Pádua Santos, and Tiago A. E. Ferreira. Mass determination of cosmological objects from gravitational wave data using neural networks. SBIC, 2021. ↩
-
Asad Khan, E.A. Huerta, and Prayush Kumar. AI and extreme scale computing to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non-precessing black hole mergers. Physics Letters B, 835:137505, December 2022. arXiv:2112.07669, doi:10.1016/j.physletb.2022.137505. ↩
-
He Wang, Zhoujian Cao, Yue Zhou, Zong-Kuan Guo, and Zhixiang Ren. Sampling with prior knowledge for high-dimensional gravitational wave data analysis. Big Data Mining and Analytics, 51:53–63, 2022. doi:10.26599/BDMA.2021.9020018. ↩
-
Alistair McLeod, Daniel Jacobs, Chayan Chatterjee, Linqing Wen, and Fiona Panther. Rapid Mass Parameter Estimation of Binary Black Hole Coalescences Using Deep Learning. arXiv:2201.11126 [astro-ph, physics:gr-qc], January 2022. Comment: 17 pages, 16 figures. arXiv:2201.11126. ↩
-
Seiya Sasaoka, Yilun Hou, Kentaro Somiya, and Hirotaka Takahashi. Localization of gravitational waves using machine learning. Physical Review D, 10510:103030, May 2022. Comment: 5 pages, 5 figures. arXiv:2202.12784, doi:10.1103/PhysRevD.105.103030. ↩
-
Weichangfeng Guo, Daniel Williams, Ik Siong Heng, Hunter Gabbard, Yeong-Bok Bae, Gungwon Kang, and Zong-Hong Zhu. Mimicking Mergers: Mistaking Black Hole Captures as Mergers. arXiv:2203.06969 [astro-ph, physics:gr-qc], March 2022. Comment: 14 pages, and 8 figures. arXiv:2203.06969. ↩
-
Minas Karamanis, Florian Beutler, John A. Peacock, David Nabergoj, and Uros Seljak. Accelerating astronomical and cosmological inference with Preconditioned Monte Carlo. July 2022. Comment: 10 pages, 9 figures. Submitted to MNRAS. Code available at https://github.com/minaskar/pocomc. arXiv:2207.05652. ↩
-
Chayan Chatterjee, Manoj Kovalam, Linqing Wen, Damon Beveridge, Foivos Diakogiannis, and Kevin Vinsen. Rapid localization of gravitational wave sources from compact binary coalescences using deep learning. The Astrophysical Journal, 9591:42, December 2023. Comment: 15 pages, 6 figures. arXiv:2207.14522, doi:10.3847/1538-4357/ad08b7. ↩
-
Mario Tsatsev. Parameter Inference of Gravitational Waves Using Inverse Autoregressive Spline Flow. PhD thesis, Radboud University, 2022. ↩
-
Joe Bayley, Chris Messenger, and Graham Woan. Rapid parameter estimation for an all-sky continuous gravitational wave search using conditional varitational auto-encoders. Physical Review D, 1068:083022, October 2022. arXiv:2209.02031, doi:10.1103/PhysRevD.106.083022. ↩
-
J. Wofford, A. B. Yelikar, Hannah Gallagher, E. Champion, D. Wysocki, V. Delfavero, J. Lange, C. Rose, V. Valsan, S. Morisaki, J. Read, C. Henshaw, and R. O’Shaughnessy. Improving performance for gravitational-wave parameter inference with an efficient and highly-parallelized algorithm. Physical Review D, 1072:024040, January 2023. arXiv:2210.07912, doi:10.1103/PhysRevD.107.024040. ↩
-
Jurriaan Langendorff, Alex Kolmus, Justin Janquart, and Chris Van Den Broeck. Normalizing flows as an avenue to studying overlapping gravitational wave signals. Physical Review Letters, 13017:171402, April 2023. Comment: 7 pages, 6 figures. arXiv:2211.15097, doi:10.1103/PhysRevLett.130.171402. ↩
-
Chayan Chatterjee and Linqing Wen. Premerger sky localization of gravitational waves from binary neutron star mergers using deep learning. The Astrophysical Journal, 9592:76, December 2023. arXiv:2301.03558, doi:10.3847/1538-4357/accffb. ↩
-
Kaze W. K. Wong, Maximiliano Isi, and Thomas D. P. Edwards. Fast Gravitational-wave Parameter Estimation without Compromises. The Astrophysical Journal, 9582:129, November 2023. \href https://github.com/kazewong/jimhttps://github.com/kazewong/jim \href https://www.youtube.com/watch?v=Cvi4abth8Zk&feature=youtu.behttps://www.youtube.com/watch?v=Cvi4abth8Zk&feature=youtu.be. arXiv:2302.05333, doi:10.3847/1538-4357/acf5cd. ↩
-
Michael J. Williams, John Veitch, and Chris Messenger. Importance nested sampling with normalising flows. Machine Learning: Science and Technology, 2023. Comment: 41 pages, 12 figures, 2 tables, submitted to Machine Learning: Science and Technology, code available at https://github.com/mj-will/nessai-ins-paper. arXiv:2302.08526, doi:10.1088/2632-2153/acd5aa. ↩
-
Miaoxin Liu, Xiao-Dong Li, and Alvin J. K. Chua. Improving the scalability of Gaussian-process error marginalization in gravitational-wave inference. July 2023. arXiv:2307.07233. ↩
-
Shriya Soma, Horst Stöcker, and Kai Zhou. Mass and tidal parameter extraction from gravitational waves of binary neutron stars mergers using deep learning. June 2023. Comment: 14 pages, 11 figures. arXiv:2306.17488. ↩
-
Meng-Fei Sun, Jin Li, Shuo Cao, and Xiaolin Liu. Deep learning forecasts of cosmic acceleration parameters from DECi-hertz Interferometer Gravitational-wave Observatory. July 2023. arXiv:2307.16437. ↩
-
Minghui Du, Bo Liang, He Wang, Peng Xu, Ziren Luo, and Yueliang Wu. Advancing space-based gravitational wave astronomy: Rapid parameter estimation via normalizing flows. SCIENCE CHINA Physics, Mechanics & Astronomy, 673:230412–, August 2023. Comment: 15 pages, 6 figures. arXiv:2308.05510, doi:10.1007/s11433-023-2270-7. ↩
-
S Vinciguerra, M Drago, G A Prodi, S Klimenko, C Lazzaro, V Necula, F Salemi, V Tiwari, M C Tringali, and G Vedovato. Enhancing the significance of gravitational wave bursts through signal classification. Classical and Quantum Gravity, 349:094003, April 2017. arXiv:1702.03208, doi:10.1088/1361-6382/aa6654. ↩
-
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, M. A. Aloy, P. A. Altin, A. Amato, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, S. Antier, S. Appert, K. Arai, M. C. Araya, J. S. Areeda, M. Arène, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, V. Avendano, A. Avila-Alvarez, S. Babak, P. Bacon, F. Badaracco, M. K. M. Bader, S. Bae, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, S. Banagiri, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, K. Barkett, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, M. Bazzan, B. Bécsy, M. Bejger, I. Belahcene, A. S. Bell, D. Beniwal, B. K. Berger, G. Bergmann, S. Bernuzzi, J. J. Bero, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, J. Bidler, I. A. Bilenko, S. A. Bilgili, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, S. Biscoveanu, A. Bisht, M. Bitossi, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, N. Bode, M. Boer, Y. Boetzel, G. Bogaert, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, C. D. Booth, R. Bork, V. Boschi, S. Bose, K. Bossie, V. Bossilkov, J. Bosveld, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, M. Branchesi, J. E. Brau, T. Briant, J. H. Briggs, F. Brighenti, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. D. Brown, S. Brunett, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, W. A. Campbell, M. Canepa, K. C. Cannon, H. Cao, J. Cao, E. Capocasa, F. Carbognani, S. Caride, M. F. Carney, G. Carullo, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, G. Cerretani, E. Cesarini, O. Chaibi, K. Chakravarti, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, K. Chatziioannou, B. D. Cheeseboro, H. Y. Chen, X. Chen, Y. Chen, H.-P. Cheng, C. K. Cheong, H. Y. Chia, A. Chincarini, A. Chiummo, G. Cho, H. S. Cho, M. Cho, N. Christensen, Q. Chu, S. Chua, K. W. Chung, S. Chung, G. Ciani, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, J. A. Clark, P. Clearwater, F. Cleva, C. Cocchieri, E. Coccia, P.-F. Cohadon, D. Cohen, R. Colgan, M. Colleoni, C. G. Collette, C. Collins, L. R. Cominsky, M. Constancio Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, K. R. Corley, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, J. Cripe, M. Croquette, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, G. Dálya, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, D. Davis, E. J. Daw, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, L. M. DeMarchi, N. Demos, T. Dent, R. De Pietri, J. Derby, R. De Rosa, C. De Rossi, R. DeSalvo, O. de Varona, S. Dhurandhar, M. C. Díaz, T. Dietrich, L. Di Fiore, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. Dmitriev, Z. Doctor, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, T. P. Downes, M. Drago, J. C. Driggers, Z. Du, J.-G. Ducoin, P. Dupej, S. E. Dwyer, P. J. Easter, T. B. Edo, M. C. Edwards, A. Effler, P. Ehrens, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, R. C. Essick, H. Estelles, D. Estevez, Z. B. Etienne, T. Etzel, M. Evans, T. M. Evans, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. M. Farr, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, C. Fee, J. Feicht, M. M. Fejer, F. Feng, A. Fernandez-Galiana, I. Ferrante, E. C. Ferreira, T. A. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, M. Fishbach, R. P. Fisher, J. M. Fishner, M. Fitz-Axen, R. Flaminio, M. Fletcher, E. Flynn, H. Fong, J. A. Font, P. W. F. Forsyth, J.-D. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, L. Gammaitoni, M. R. Ganija, S. G. Gaonkar, A. Garcia, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, G. Gaur, V. Gayathri, G. Gemme, E. Genin, A. Gennai, D. George, J. George, L. Gergely, V. Germain, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, S. Ghosh, B. Giacomazzo, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, G. Giordano, L. Glover, P. Godwin, E. Goetz, R. Goetz, B. Goncharov, G. González, J. M. Gonzalez Castro, A. Gopakumar, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, E. M. Gretarsson, P. Groot, H. Grote, S. Grunewald, P. Gruning, G. M. Guidi, H. K. Gulati, Y. Guo, A. Gupta, M. K. Gupta, E. K. Gustafson, R. Gustafson, L. Haegel, O. Halim, B. R. Hall, E. D. Hall, E. Z. Hamilton, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, J. Hanson, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, C.-J. Haster, K. Haughian, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, A. W. Heptonstall, Francisco Hernandez Vivanco, M. Heurs, S. Hild, T. Hinderer, D. Hoak, S. Hochheim, D. Hofman, A. M. Holgado, N. A. Holland, K. Holt, D. E. Holz, P. Hopkins, C. Horst, J. Hough, E. J. Howell, C. G. Hoy, A. Hreibi, E. A. Huerta, D. Huet, B. Hughey, M. Hulko, S. Husa, S. H. Huttner, T. Huynh-Dinh, B. Idzkowski, A. Iess, C. Ingram, R. Inta, G. Intini, B. Irwin, H. N. Isa, J.-M. Isac, M. Isi, B. R. Iyer, K. Izumi, T. Jacqmin, S. J. Jadhav, K. Jani, N. N. Janthalur, P. Jaranowski, A. C. Jenkins, J. Jiang, D. S. Johnson, A. W. Jones, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, J. Junker, C. V. Kalaghatgi, V. Kalogera, B. Kamai, S. Kandhasamy, G. Kang, J. B. Kanner, S. J. Kapadia, S. Karki, K. S. Karvinen, R. Kashyap, M. Kasprzack, S. Katsanevas, E. Katsavounidis, W. Katzman, S. Kaufer, K. Kawabe, N. V. Keerthana, F. Kéfélian, D. Keitel, R. Kennedy, J. S. Key, F. Y. Khalili, H. Khan, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, M. Khursheed, N. Kijbunchoo, Chunglee Kim, J. C. Kim, K. Kim, W. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, E. J. King, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, L. Kleybolte, J. H. Klika, S. Klimenko, T. D. Knowles, P. Koch, S. M. Koehlenbeck, G. Koekoek, S. Koley, V. Kondrashov, A. Kontos, N. Koper, M. Korobko, W. Z. Korth, I. Kowalska, D. B. Kozak, V. Kringel, N. Krishnendu, A. Królak, G. Kuehn, A. Kumar, P. Kumar, R. Kumar, S. Kumar, L. Kuo, A. Kutynia, S. Kwang, B. D. Lackey, K. H. Lai, T. L. Lam, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, R. K. Lanza, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, J. Lehmann, A. Lenon, N. Leroy, N. Letendre, Y. Levin, J. Li, K. J. L. Li, T. G. F. Li, X. Li, F. Lin, F. Linde, S. D. Linker, T. B. Littenberg, J. Liu, X. Liu, R. K. L. Lo, N. A. Lockerbie, L. T. London, A. Longo, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, M. E. Lower, H. Lück, D. Lumaca, A. P. Lundgren, R. Lynch, Y. Ma, R. Macas, S. Macfoy, M. MacInnis, D. M. Macleod, A. Macquet, F. Magaña-Sandoval, L. Magaña Zertuche, R. M. Magee, E. Majorana, I. Maksimovic, A. Malik, N. Man, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, M. Mapelli, F. Marchesoni, F. Marion, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, D. V. Martynov, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, J. J. McCann, R. McCarthy, D. E. McClelland, S. McCormick, L. McCuller, S. C. McGuire, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, G. D. Meadors, M. Mehmet, A. K. Mehta, J. Meidam, A. Melatos, G. Mendell, R. A. Mercer, L. Mereni, E. L. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, R. Metzdorff, P. M. Meyers, H. Miao, C. Michel, H. Middleton, E. E. Mikhailov, L. Milano, A. L. Miller, A. Miller, M. Millhouse, J. C. Mills, M. C. Milovich-Goff, O. Minazzoli, Y. Minenkov, A. Mishkin, C. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, G. Mo, D. Moffa, K. Mogushi, S. R. P. Mohapatra, M. Montani, C. J. Moore, D. Moraru, G. Moreno, S. Morisaki, B. Mours, C. M. Mow-Lowry, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, M. Muratore, P. G. Murray, A. Nagar, I. Nardecchia, L. Naticchioni, R. K. Nayak, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, A. Neunzert, K. Y. Ng, S. Ng, P. Nguyen, D. Nichols, S. Nissanke, F. Nocera, C. North, L. K. Nuttall, M. Obergaulinger, J. Oberling, B. D. O’Brien, G. D. O’Dea, G. H. Ogin, J. J. Oh, S. H. Oh, F. Ohme, H. Ohta, M. A. Okada, M. Oliver, P. Oppermann, Richard J. Oram, B. O’Reilly, R. G. Ormiston, L. F. Ortega, R. O’Shaughnessy, S. Ossokine, D. J. Ottaway, H. Overmier, B. J. Owen, A. E. Pace, G. Pagano, M. A. Page, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, Huang-Wei Pan, B. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, A. Parida, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patil, B. Patricelli, B. L. Pearlstone, C. Pedersen, M. Pedraza, R. Pedurand, A. Pele, S. Penn, C. J. Perez, A. Perreca, H. P. Pfeiffer, M. Phelps, K. S. Phukon, O. J. Piccinni, M. Pichot, F. Piergiovanni, G. Pillant, L. Pinard, M. Pirello, M. Pitkin, R. Poggiani, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, J. Powell, A. K. Prajapati, J. Prasad, K. Prasai, R. Prasanna, G. Pratten, T. Prestegard, S. Privitera, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, P. J. Quinonez, E. A. Quintero, R. Quitzow-James, F. J. Raab, H. Radkins, N. Radulescu, P. Raffai, S. Raja, C. Rajan, B. Rajbhandari, M. Rakhmanov, K. E. Ramirez, A. Ramos-Buades, Javed Rana, K. Rao, P. Rapagnani, V. Raymond, M. Razzano, J. Read, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, W. Ren, F. Ricci, C. J. Richardson, J. W. Richardson, P. M. Ricker, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, M. Romanelli, R. Romano, C. L. Romel, J. H. Romie, K. Rose, D. Rosińska, S. G. Rosofsky, M. P. Ross, S. Rowan, A. Rüdiger, P. Ruggi, G. Rutins, K. Ryan, S. Sachdev, T. Sadecki, M. Sakellariadou, O. S. Salafia, L. Salconi, M. Saleem, A. Samajdar, L. Sammut, E. J. Sanchez, L. E. Sanchez, N. Sanchis-Gual, V. Sandberg, J. R. Sanders, K. A. Santiago, N. Sarin, B. Sassolas, B. S. Sathyaprakash, P. R. Saulson, O. Sauter, R. L. Savage, P. Schale, M. Scheel, J. Scheuer, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, B. W. Schulte, B. F. Schutz, S. G. Schwalbe, J. Scott, S. M. Scott, E. Seidel, D. Sellers, A. S. Sengupta, N. Sennett, D. Sentenac, V. Sequino, A. Sergeev, Y. Setyawati, D. A. Shaddock, T. Shaffer, M. S. Shahriar, M. B. Shaner, L. Shao, P. Sharma, P. Shawhan, H. Shen, R. Shink, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, K. Siellez, M. Sieniawska, D. Sigg, A. D. Silva, L. P. Singer, N. Singh, A. Singhal, A. M. Sintes, S. Sitmukhambetov, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. R. Smith, R. J. E. Smith, S. Somala, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, E. Sowell, A. P. Spencer, M. Spera, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, M. Standke, D. A. Steer, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, S. P. Stevenson, D. Stocks, R. Stone, D. J. Stops, K. A. Strain, G. Stratta, S. E. Strigin, A. Strunk, R. Sturani, A. L. Stuver, V. Sudhir, T. Z. Summerscales, L. Sun, S. Sunil, J. Suresh, P. J. Sutton, B. L. Swinkels, M. J. Szczepańczyk, M. Tacca, S. C. Tait, C. Talbot, D. Talukder, D. B. Tanner, M. Tápai, A. Taracchini, J. D. Tasson, R. Taylor, F. Thies, M. Thomas, P. Thomas, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, K. Toland, M. Tonelli, Z. Tornasi, A. Torres-Forné, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, M. C. Tringali, A. Trovato, L. Trozzo, R. Trudeau, K. W. Tsang, M. Tse, R. Tso, L. Tsukada, D. Tsuna, D. Tuyenbayev, K. Ueno, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, A. A. van Veggel, M. Vardaro, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, D. Verkindt, F. Vetrano, A. Viceré, A. D. Viets, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, R. Walet, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, J. Z. Wang, W. H. Wang, Y. F. Wang, R. L. Ward, Z. A. Warden, J. Warner, M. Was, J. Watchi, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, F. Wellmann, L. Wen, E. K. Wessel, P. Weßels, J. W. Westhouse, K. Wette, J. T. Whelan, B. F. Whiting, C. Whittle, D. M. Wilken, D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Woehler, J. K. Wofford, J. Worden, J. L. Wright, D. S. Wu, D. M. Wysocki, L. Xiao, H. Yamamoto, C. C. Yancey, L. Yang, M. J. Yap, M. Yazback, D. W. Yeeles, Hang Yu, Haocun Yu, S. H. R. Yuen, M. Yvert, A. K. Zadrożny, M. Zanolin, T. Zelenova, J.-P. Zendri, M. Zevin, J. Zhang, L. Zhang, T. Zhang, C. Zhao, M. Zhou, Z. Zhou, X. J. Zhu, A. B. Zimmerman, Y. Zlochower, M. E. Zucker, and J. Zweizig. Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. The Astrophysical Journal, 8822:L24, September 2019. doi:10.3847/2041-8213/ab3800. ↩
-
Jade Powell, Simon Stevenson, Ilya Mandel, and Peter Tiňo. Unmodelled clustering methods for gravitational wave populations of compact binary mergers. Monthly Notices of the Royal Astronomical Society, 4883:3810–3817, September 2019. arXiv:1905.04825, doi:10.1093/mnras/stz1938. ↩
-
Vijay Varma, Davide Gerosa, Leo C. Stein, Franççois Hébert, and Hao Zhang. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants. Physical Review Letters, 1221:011101, January 2019. arXiv:1809.09125, doi:10.1103/PhysRevLett.122.011101. ↩
-
Leonidas Deligiannidis, Chen-Hsiang Yu, Mira Yun, and Hongsheng Wu. Case study: Skymap data analysis. In Proceedings on the International Conference on Artificial Intelligence ICAI, 54–59. The Steering Committee of The World Congress in Computer Science, Computer \dots , 2019. ↩
-
Kaze W. K. Wong and Davide Gerosa. Machine-learning interpolation of population-synthesis simulations to interpret gravitational-wave observations: A case study. Physical Review D, 1008:083015, October 2019. arXiv:1909.06373, doi:10.1103/PhysRevD.100.083015. ↩
-
Kaze W. K. Wong, Gabriella Contardo, and Shirley Ho. Gravitational-wave population inference with deep flow-based generative network. Physical Review D, 10112:123005, June 2020. arXiv:2002.09491, doi:10.1103/PhysRevD.101.123005. ↩
-
Margherita Fasano, Kaze W. K. Wong, Andrea Maselli, Emanuele Berti, Valeria Ferrari, and Bangalore S. Sathyaprakash. Distinguishing double neutron star from neutron star-black hole binary populations with gravitational wave observations. Physical Review D, 1022:023025, July 2020. arXiv:2005.01726, doi:10.1103/PhysRevD.102.023025. ↩
-
Vaibhav Tiwari. VAMANA: modeling binary black hole population with minimal assumptions. Classical and Quantum Gravity, 3815:155007, July 2021. arXiv:2006.15047, doi:10.1088/1361-6382/ac0b54. ↩
-
Georgios Vernardos, Grigorios Tsagkatakis, and Yannis Pantazis. Quantifying the structure of strong gravitational lens potentials with uncertainty-aware deep neural networks. Monthly Notices of the Royal Astronomical Society, 4994:5641–5652, November 2020. arXiv:2010.07314, doi:10.1093/mnras/staa3201. ↩
-
Kaze W. K. Wong, Gabriele Franciolini, Valerio De Luca, Vishal Baibhav, Emanuele Berti, Paolo Pani, and Antonio Riotto. Constraining the primordial black hole scenario with Bayesian inference and machine learning: The GWTC-2 gravitational wave catalog. Physical Review D, 1032:023026, January 2021. arXiv:2011.01865, doi:10.1103/PhysRevD.103.023026. ↩
-
Rubén Arjona, Hai-Nan Lin, Savvas Nesseris, and Li Tang. Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events. Physical Review D, 10310:103513, May 2021. arXiv:2011.02718, doi:10.1103/PhysRevD.103.103513. ↩
-
Davide Gerosa, Geraint Pratten, and Alberto Vecchio. Gravitational-wave selection effects using neural-network classifiers. Physical Review D, 10210:103020, 2020-07-13, 2020-11. arXiv:2007.06585, doi:10.1103/PhysRevD.102.103020. ↩
-
Colm Talbot and Eric Thrane. Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning. The Astrophysical Journal, 9271:76, March 2022. Comment: 11 pages, 6 figures, accompanying code at https://github.com/ColmTalbot/gmm_sensitivity_estimation. arXiv:2012.01317, doi:10.3847/1538-4357/ac4bc0. ↩
-
João D. Álvares, José A. Font, Felipe F. Freitas, Osvaldo G. Freitas, António P. Morais, Solange Nunes, Antonio Onofre, and Alejandro Torres-Forné. Gravitational-wave parameter inference using Deep Learning. In 2021 International Conference on Content-Based Multimedia Indexing CBMI, 1–6. 2021. doi:10.1109/CBMI50038.2021.9461893. ↩
-
Damon H. T. Cheung, Kaze W. K. Wong, Otto A. Hannuksela, Tjonnie G. F. Li, and Shirley Ho. Testing the robustness of simulation-based gravitational-wave population inference. arXiv preprint arXiv:2112.06707, December 2021. arXiv:2112.06707. ↩
-
Kaze W. K. Wong, Katelyn Breivik, Kyle Kremer, and Thomas Callister. Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning. Physical Review D, 1038:083021, April 2021. arXiv:2011.03564, doi:10.1103/PhysRevD.103.083021. ↩
-
Matthew Mould, Davide Gerosa, and Stephen R. Taylor. Deep learning and Bayesian inference of gravitational-wave populations: hierarchical black-hole mergers. arXiv:2203.03651 [astro-ph, physics:gr-qc], March 2022. Comment: 28 pages, 16 figures, 5 tables. arXiv:2203.03651. ↩
-
Stefan H. Strub, Luigi Ferraioli, Cedric Schmelzbach, Simon C. Stähler, and Domenico Giardini. Bayesian parameter-estimation of Galactic binaries in LISA data with Gaussian Process Regression. arXiv:2204.04467 [astro-ph, physics:gr-qc, physics:physics], April 2022. Comment: 12 pages, 10 figures. arXiv:2204.04467. ↩
-
Tomohiro Nakama. Machine learning primordial black hole formation. Physical Review D, 1056:063528, March 2022. doi:10.1103/PhysRevD.105.063528. ↩
-
Kaze W. K. Wong and Miles Cranmer. Automated discovery of interpretable gravitational-wave population models. July 2022. Comment: Published in ML4Astro Workshop at ICML 2022. 8 pages, 1 figure. Code at https://github.com/kazewong/SymbolicGWPopulation_paper. arXiv:2207.12409. ↩
-
Siddharth Mohite. Data-Driven Population Inference from Gravitational-Wave Sources and Electromagnetic Counterparts. PhD thesis, University of Wisconsin-Milwaukee, August 2022. ↩
-
David Ruhe, Kaze Wong, Miles Cranmer, and Patrick Forré. Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study. November 2022. arXiv:2211.09008. ↩
-
Bruce Edelman, Ben Farr, and Zoheyr Doctor. Cover Your Basis: Comprehensive Data-Driven Characterization of the Binary Black Hole Population. October 2022. Comment: 18 pages, 11 figure, 3 tables. arXiv:2210.12834. ↩
-
Anarya Ray, Ignacio Magaña Hernandez, Siddharth Mohite, Jolien Creighton, and Shasvath Kapadia. Non-parametric inference of the population of compact binaries from gravitational wave observations using binned Gaussian processes. April 2023. \href https://dcc.ligo.org/P2300098/https://dcc.ligo.org/P2300098/. arXiv:2304.08046. ↩
-
Filip Morawski, Michał Bejger, and Paweł Ciecieląg. Convolutional neural network classifier for the output of the time-domain $\mathcal\vphantom \F\vphantom \$-statistic all-sky search for continuous gravitational waves. Machine Learning: Science and Technology, 12:025016, June 2020. arXiv:1907.06917, doi:10.1088/2632-2153/ab86c7. ↩
-
Christoph Dreissigacker, Rahul Sharma, Chris Messenger, Ruining Zhao, and Reinhard Prix. Deep-learning continuous gravitational waves. Physical Review D, 1004:044009, August 2019. arXiv:1904.13291, doi:10.1103/PhysRevD.100.044009. ↩
-
Christoph Dreissigacker and Reinhard Prix. Deep-learning continuous gravitational waves: Multiple detectors and realistic noise. Physical Review D, 1022:022005, July 2020. arXiv:2005.04140, doi:10.1103/PhysRevD.102.022005. ↩
-
Joe Bayley, Chris Messenger, and Graham Woan. Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals. Physical Review D, 1002:023006, July 2019. \href https://git.ligo.org/joseph.bayley/soapcwhttps://git.ligo.org/joseph.bayley/soapcw. arXiv:1903.12614, doi:10.1103/PhysRevD.100.023006. ↩
-
Andrew L. Miller, Pia Astone, Sabrina D’Antonio, Sergio Frasca, Giuseppe Intini, Iuri La Rosa, Paola Leaci, Simone Mastrogiovanni, Federico Muciaccia, Andonis Mitidis, Cristiano Palomba, Ornella J. Piccinni, Akshat Singhal, Bernard F. Whiting, and Luca Rei. How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? Physical Review D, 1006:062005, September 2019. arXiv:1909.02262, doi:10.1103/PhysRevD.100.062005. ↩
-
A. N. D. R. E. W. L. MILLER. Using Machine Learning and the Hough Transform to Search for Gravitational Waves Due to R-Mode Emission by Isolated Neutron Stars. PhD thesis, UNIVERSITY OF FLORIDA, 2019. ↩
-
B. Beheshtipour and M. A. Papa. Deep learning for clustering of continuous gravitational wave candidates. Physical Review D, 1016:064009, March 2020. arXiv:2001.03116, doi:10.1103/PhysRevD.101.064009. ↩
-
Hannah Middleton, Patrick Clearwater, Andrew Melatos, and Liam Dunn. Search for gravitational waves from five low mass x-ray binaries in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 1022:023006, July 2020. arXiv:2006.06907, doi:10.1103/PhysRevD.102.023006. ↩
-
Joe Bayley, Chris Messenger, and Graham Woan. Robust machine learning algorithm to search for continuous gravitational waves. Physical Review D, 1028:083024, October 2020. \href https://git.ligo.org/joseph.bayley/soapcwhttps://git.ligo.org/joseph.bayley/soapcw. arXiv:2007.08207v2, doi:10.1103/PhysRevD.102.083024. ↩
-
Joseph Charles Bayley. Non-Parametric and Machine Learning Techniques for Continuous Gravitational Wave Searches. PhD thesis, University of Glasgow, July 2020. ↩
-
Dana Jones and Ling Sun. Search for continuous gravitational waves from Fomalhaut b in the second Advanced LIGO observing run with a hidden Markov model. Physical Review D, 1032:023020, January 2021. arXiv:2007.08732, doi:10.1103/PhysRevD.103.023020. ↩
-
S. Suvorova, L. Sun, A. Melatos, W. Moran, and R. J. Evans. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin. Physical Review D, 9312:123009, June 2016. arXiv:1606.02412, doi:10.1103/PhysRevD.93.123009. ↩
-
S. Suvorova, P. Clearwater, A. Melatos, L. Sun, W. Moran, and R. J. Evans. Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. II. Binary orbital phase tracking. Physical Review D, 9610:102006, 2017-10-19, 2017-11. arXiv:1710.07092, doi:10.1103/PhysRevD.96.102006. ↩
-
Ling Sun and Andrew Melatos. Application of hidden markov model tracking to the search for long-duration transient gravitational waves from the remnant of the binary neutron star merger GW170817. Physical Review D, 9912:123003, 2018-10-08, 2019-06. arXiv:1810.03577, doi:10.1103/PhysRevD.99.123003. ↩
-
L. Sun, A. Melatos, S. Suvorova, W. Moran, and R. J. Evans. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants. Physical Review D, 974:043013, 2017-10-02, 2018-02. arXiv:1710.00460, doi:10.1103/PhysRevD.97.043013. ↩
-
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, M. A. Aloy, P. A. Altin, A. Amato, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, S. Antier, S. Appert, K. Arai, M. C. Araya, J. S. Areeda, M. Arène, N. Arnaud, S. Ascenzi, G. Ashton, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, V. Avendano, A. Avila-Alvarez, S. Babak, P. Bacon, F. Badaracco, M. K. M. Bader, S. Bae, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, S. Banagiri, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, K. Barkett, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, M. Bazzan, B. Bécsy, M. Bejger, I. Belahcene, A. S. Bell, D. Beniwal, B. K. Berger, G. Bergmann, S. Bernuzzi, J. J. Bero, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, J. Bidler, I. A. Bilenko, S. A. Bilgili, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, S. Biscoveanu, A. Bisht, M. Bitossi, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, N. Bode, M. Boer, Y. Boetzel, G. Bogaert, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, C. D. Booth, R. Bork, V. Boschi, S. Bose, K. Bossie, V. Bossilkov, J. Bosveld, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, M. Branchesi, J. E. Brau, T. Briant, J. H. Briggs, F. Brighenti, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. D. Brown, S. Brunett, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, W. A. Campbell, M. Canepa, K. C. Cannon, H. Cao, J. Cao, E. Capocasa, F. Carbognani, S. Caride, M. F. Carney, G. Carullo, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, G. Cerretani, E. Cesarini, O. Chaibi, K. Chakravarti, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, B. D. Cheeseboro, H. Y. Chen, X. Chen, Y. Chen, H.-P. Cheng, C. K. Cheong, H. Y. Chia, A. Chincarini, A. Chiummo, G. Cho, H. S. Cho, M. Cho, N. Christensen, Q. Chu, S. Chua, K. W. Chung, S. Chung, G. Ciani, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, J. A. Clark, P. Clearwater, F. Cleva, C. Cocchieri, E. Coccia, P.-F. Cohadon, D. Cohen, R. Colgan, M. Colleoni, C. G. Collette, C. Collins, L. R. Cominsky, M. Constancio, L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, K. R. Corley, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, J. Cripe, M. Croquette, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, G. Dálya, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, D. Davis, E. J. Daw, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, L. M. DeMarchi, N. Demos, T. Dent, R. De Pietri, J. Derby, R. De Rosa, C. De Rossi, R. DeSalvo, O. de Varona, S. Dhurandhar, M. C. Díaz, T. Dietrich, L. Di Fiore, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. Dmitriev, Z. Doctor, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, T. P. Downes, M. Drago, J. C. Driggers, Z. Du, J.-G. Ducoin, P. Dupej, S. E. Dwyer, P. J. Easter, T. B. Edo, M. C. Edwards, A. Effler, P. Ehrens, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, R. C. Essick, H. Estelles, D. Estevez, Z. B. Etienne, T. Etzel, M. Evans, T. M. Evans, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. M. Farr, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, C. Fee, J. Feicht, M. M. Fejer, F. Feng, A. Fernandez-Galiana, I. Ferrante, E. C. Ferreira, T. A. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, M. Fishbach, R. P. Fisher, J. M. Fishner, M. Fitz-Axen, R. Flaminio, M. Fletcher, E. Flynn, H. Fong, J. A. Font, P. W. F. Forsyth, J.-D. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, L. Gammaitoni, M. R. Ganija, S. G. Gaonkar, A. Garcia, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, G. Gaur, V. Gayathri, G. Gemme, E. Genin, A. Gennai, D. George, J. George, L. Gergely, V. Germain, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, S. Ghosh, B. Giacomazzo, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, G. Giordano, L. Glover, P. Godwin, E. Goetz, R. Goetz, B. Goncharov, G. González, J. M. Gonzalez Castro, A. Gopakumar, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, E. M. Gretarsson, P. Groot, H. Grote, S. Grunewald, P. Gruning, G. M. Guidi, H. K. Gulati, Y. Guo, A. Gupta, M. K. Gupta, E. K. Gustafson, R. Gustafson, L. Haegel, O. Halim, B. R. Hall, E. D. Hall, E. Z. Hamilton, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, J. Hanson, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, C.-J. Haster, K. Haughian, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, A. W. Heptonstall, Francisco Hernandez Vivanco, M. Heurs, S. Hild, T. Hinderer, D. Hoak, S. Hochheim, D. Hofman, A. M. Holgado, N. A. Holland, K. Holt, D. E. Holz, P. Hopkins, C. Horst, J. Hough, E. J. Howell, C. G. Hoy, A. Hreibi, E. A. Huerta, D. Huet, B. Hughey, M. Hulko, S. Husa, S. H. Huttner, T. Huynh-Dinh, B. Idzkowski, A. Iess, C. Ingram, R. Inta, G. Intini, B. Irwin, H. N. Isa, J.-M. Isac, M. Isi, B. R. Iyer, K. Izumi, T. Jacqmin, S. J. Jadhav, K. Jani, N. N. Janthalur, P. Jaranowski, A. C. Jenkins, J. Jiang, D. S. Johnson, A. W. Jones, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, J. Junker, C. V. Kalaghatgi, V. Kalogera, B. Kamai, S. Kandhasamy, G. Kang, J. B. Kanner, S. J. Kapadia, S. Karki, K. S. Karvinen, R. Kashyap, M. Kasprzack, S. Katsanevas, E. Katsavounidis, W. Katzman, S. Kaufer, K. Kawabe, N. V. Keerthana, F. Kéfélian, D. Keitel, R. Kennedy, J. S. Key, F. Y. Khalili, H. Khan, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, M. Khursheed, N. Kijbunchoo, Chunglee Kim, J. C. Kim, K. Kim, W. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, E. J. King, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, L. Kleybolte, J. H. Klika, S. Klimenko, T. D. Knowles, P. Koch, S. M. Koehlenbeck, G. Koekoek, S. Koley, V. Kondrashov, A. Kontos, N. Koper, M. Korobko, W. Z. Korth, I. Kowalska, D. B. Kozak, V. Kringel, N. Krishnendu, A. Królak, G. Kuehn, A. Kumar, P. Kumar, R. Kumar, S. Kumar, L. Kuo, A. Kutynia, S. Kwang, B. D. Lackey, K. H. Lai, T. L. Lam, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, R. K. Lanza, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, J. Lehmann, A. Lenon, N. Leroy, N. Letendre, Y. Levin, J. Li, K. J. L. Li, T. G. F. Li, X. Li, F. Lin, F. Linde, S. D. Linker, T. B. Littenberg, J. Liu, X. Liu, R. K. L. Lo, N. A. Lockerbie, L. T. London, A. Longo, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, M. E. Lower, H. Lück, D. Lumaca, A. P. Lundgren, R. Lynch, Y. Ma, R. Macas, S. Macfoy, M. MacInnis, D. M. Macleod, A. Macquet, F. Magaña-Sandoval, L. Magaña Zertuche, R. M. Magee, E. Majorana, I. Maksimovic, A. Malik, N. Man, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, F. Marion, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, D. V. Martynov, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, J. J. McCann, R. McCarthy, D. E. McClelland, S. McCormick, L. McCuller, S. C. McGuire, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, G. D. Meadors, M. Mehmet, A. K. Mehta, J. Meidam, A. Melatos, G. Mendell, R. A. Mercer, L. Mereni, E. L. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, R. Metzdorff, P. M. Meyers, H. Miao, C. Michel, H. Middleton, E. E. Mikhailov, L. Milano, A. L. Miller, A. Miller, M. Millhouse, J. C. Mills, M. C. Milovich-Goff, O. Minazzoli, Y. Minenkov, A. Mishkin, C. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, G. Mo, D. Moffa, K. Mogushi, S. R. P. Mohapatra, M. Montani, C. J. Moore, D. Moraru, G. Moreno, S. Morisaki, B. Mours, C. M. Mow-Lowry, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, M. Muratore, P. G. Murray, A. Nagar, I. Nardecchia, L. Naticchioni, R. K. Nayak, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, A. Neunzert, K. Y. Ng, S. Ng, P. Nguyen, D. Nichols, S. Nissanke, F. Nocera, C. North, L. K. Nuttall, M. Obergaulinger, J. Oberling, B. D. O’Brien, G. D. O’Dea, G. H. Ogin, J. J. Oh, S. H. Oh, F. Ohme, H. Ohta, M. A. Okada, M. Oliver, P. Oppermann, Richard J. Oram, B. O’Reilly, R. G. Ormiston, L. F. Ortega, R. O’Shaughnessy, S. Ossokine, D. J. Ottaway, H. Overmier, B. J. Owen, A. E. Pace, G. Pagano, M. A. Page, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, Huang-Wei Pan, B. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, A. Parida, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patil, B. Patricelli, B. L. Pearlstone, C. Pedersen, M. Pedraza, R. Pedurand, A. Pele, S. Penn, C. J. Perez, A. Perreca, H. P. Pfeiffer, M. Phelps, K. S. Phukon, O. J. Piccinni, M. Pichot, F. Piergiovanni, G. Pillant, L. Pinard, M. Pirello, M. Pitkin, R. Poggiani, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, J. Powell, A. K. Prajapati, J. Prasad, K. Prasai, R. Prasanna, G. Pratten, T. Prestegard, S. Privitera, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, P. J. Quinonez, E. A. Quintero, R. Quitzow-James, F. J. Raab, H. Radkins, N. Radulescu, P. Raffai, S. Raja, C. Rajan, B. Rajbhandari, M. Rakhmanov, K. E. Ramirez, A. Ramos-Buades, Javed Rana, K. Rao, P. Rapagnani, V. Raymond, M. Razzano, J. Read, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, W. Ren, F. Ricci, C. J. Richardson, J. W. Richardson, P. M. Ricker, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, M. Romanelli, R. Romano, C. L. Romel, J. H. Romie, K. Rose, D. Rosińńska, S. G. Rosofsky, M. P. Ross, S. Rowan, A. Rüdiger, P. Ruggi, G. Rutins, K. Ryan, S. Sachdev, T. Sadecki, M. Sakellariadou, L. Salconi, M. Saleem, A. Samajdar, L. Sammut, E. J. Sanchez, L. E. Sanchez, N. Sanchis-Gual, V. Sandberg, J. R. Sanders, K. A. Santiago, N. Sarin, B. Sassolas, P. R. Saulson, O. Sauter, R. L. Savage, P. Schale, M. Scheel, J. Scheuer, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, B. W. Schulte, B. F. Schutz, S. G. Schwalbe, J. Scott, S. M. Scott, E. Seidel, D. Sellers, A. S. Sengupta, N. Sennett, D. Sentenac, V. Sequino, A. Sergeev, Y. Setyawati, D. A. Shaddock, T. Shaffer, M. S. Shahriar, M. B. Shaner, L. Shao, P. Sharma, P. Shawhan, H. Shen, R. Shink, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, K. Siellez, M. Sieniawska, D. Sigg, A. D. Silva, L. P. Singer, N. Singh, A. Singhal, A. M. Sintes, S. Sitmukhambetov, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. R. Smith, R. J. E. Smith, S. Somala, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, E. Sowell, A. P. Spencer, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, M. Standke, D. A. Steer, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, S. P. Stevenson, D. Stocks, R. Stone, D. J. Stops, K. A. Strain, G. Stratta, S. E. Strigin, A. Strunk, R. Sturani, A. L. Stuver, V. Sudhir, T. Z. Summerscales, L. Sun, S. Sunil, J. Suresh, P. J. Sutton, B. L. Swinkels, M. J. Szczepańńczyk, M. Tacca, S. C. Tait, C. Talbot, D. Talukder, D. B. Tanner, M. Tápai, A. Taracchini, J. D. Tasson, R. Taylor, F. Thies, M. Thomas, P. Thomas, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, K. Toland, M. Tonelli, Z. Tornasi, A. Torres-Forné, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, M. C. Tringali, A. Trovato, L. Trozzo, R. Trudeau, K. W. Tsang, M. Tse, R. Tso, L. Tsukada, D. Tsuna, D. Tuyenbayev, K. Ueno, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, J. V. van Heijningen, L. van der Schaaf, A. A. van Veggel, M. Vardaro, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, D. Verkindt, F. Vetrano, A. Viceré, A. D. Viets, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, R. Walet, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, J. Z. Wang, W. H. Wang, Y. F. Wang, R. L. Ward, Z. A. Warden, J. Warner, M. Was, J. Watchi, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, F. Wellmann, L. Wen, E. K. Wessel, P. Weßels, J. W. Westhouse, K. Wette, J. T. Whelan, B. F. Whiting, C. Whittle, D. M. Wilken, D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Woehler, J. K. Wofford, J. Worden, J. L. Wright, D. S. Wu, D. M. Wysocki, L. Xiao, H. Yamamoto, C. C. Yancey, L. Yang, M. J. Yap, M. Yazback, D. W. Yeeles, Hang Yu, Haocun Yu, S. H. R. Yuen, M. Yvert, A. K. Zadrożżny, M. Zanolin, T. Zelenova, J.-P. Zendri, M. Zevin, J. Zhang, L. Zhang, T. Zhang, C. Zhao, M. Zhou, Z. Zhou, X. J. Zhu, M. E. Zucker, J. Zweizig, L. M. Dunn, S. Suvorova, R. J. Evans, and W. Moran. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 10012:122002, December 2019. arXiv:1906.12040, doi:10.1103/PhysRevD.100.122002. ↩
-
Christoph Dreißigacker. Searches for Continuous Gravitational Waves : Sensitivity Estimation and Deep Learning as a Novel Search Method. PhD thesis, Hannover : Institutionelles Repositorium der Leibniz Universität Hannover / Hannover : Gottfried Wilhelm Leibniz Universität, October 2020. doi:10.15488/10137. ↩
-
Filip Morawski, Michał Bejger, and Paweł Ciecieląg. Machine learning classification of continuous gravitational-wave signal candidates. In XXXIX Polish Astronomical Society Meeting, volume 10, 33–39. 2020. ↩
-
Takahiro S. Yamamoto and Takahiro Tanaka. Use of an excess power method and a convolutional neural network in an all-sky search for continuous gravitational waves. Physical Review D, 1038:084049, April 2021. arXiv:2011.12522, doi:10.1103/PhysRevD.103.084049. ↩
-
B. Beheshtipour and M. A. Papa. Deep learning for clustering of continuous gravitational wave candidates. II. Identification of low-SNR candidates. Physical Review D, 1036:064027, March 2021. arXiv:2012.04381v1, doi:10.1103/PhysRevD.103.064027. ↩
-
Deeksha Beniwal, Patrick Clearwater, Liam Dunn, Andrew Melatos, and David Ottaway. Search for continuous gravitational waves from ten H.E.S.S. sources using a hidden Markov model. Physical Review D, 1038:083009, April 2021. arXiv:2102.06334, doi:10.1103/PhysRevD.103.083009. ↩
-
Iuri La Rosa, Pia Astone, Sabrina D’Antonio, Sergio Frasca, Paola Leaci, Andrew L. Miller, Cristiano Palomba, Ornella J. Piccinni, Lorenzo Pierini, and Tania Regimbau. Continuous Gravitational-Wave Data Analysis with General Purpose Computing on Graphic Processing Units. Universe, 77:218, 2021. doi:10.3390/universe7070218. ↩
-
A. Melatos, P. Clearwater, S. Suvorova, L. Sun, W. Moran, and R. J. Evans. Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. III. Rotational phase tracking. Physical Review D, 1044:042003, August 2021. arXiv:2107.12822, doi:10.1103/PhysRevD.104.042003. ↩
-
Yu-Yang Songsheng, Yi-Qian Qian, Yan-Rong Li, Pu Du, Jie-Wen Chen, Yan Wang, Soumya D. Mohanty, and Jian-Min Wang. Search for Continuous Gravitational-wave Signals in Pulsar Timing Residuals: A New Scalable Approach with Diffusive Nested Sampling. The Astrophysical Journal, 9222:228, December 2021. arXiv:2109.00367, doi:10.3847/1538-4357/ac25fc. ↩
-
Takahiro S. Yamamoto, Andrew L. Miller, Magdalena Sieniawska, and Takahiro Tanaka. Assessing the impact of non-Gaussian noise on convolutional neural networks that search for continuous gravitational waves. Physical Review D, 106arXiv:2206\.00882:024025, July 2022. Comment: 17 pages, 11 figures. arXiv:2206.00882, doi:10.1103/PhysRevD.106.024025. ↩
-
Andrés F. Vargas and Andrew Melatos. Search for continuous gravitational waves from PSR J0437$-$4715 with a hidden Markov model in O3 LIGO data. August 2022. arXiv:2208.03932. ↩
-
Prasanna M. Joshi and Reinhard Prix. A novel neural-network architecture for continuous gravitational waves. May 2023. Comment: 9 pages, 7 figures. arXiv:2305.01057. ↩
-
Premkumar Duraisamy, Yuvaraj Natarajan, V. Niranjani, and K Parvathy. Optimized detection of continuous gravitational-wave signals using convolutional neural network. In 2023 3rd International Conference on Artificial Intelligence and Signal Processing AISP, 1–5. 2023. doi:10.1109/AISP57993.2023.10134809. ↩
-
Emmanuel Pintelas, Ioannis E. Livieris, and Panagiotis Pintelas. A Deep Learning-Based Methodology for Detecting and Visualizing Continuous Gravitational Waves. In Ilias Maglogiannis, Lazaros Iliadis, John MacIntyre, and Manuel Dominguez, editors, Artificial Intelligence Applications and Innovations, 3–14. Cham, 2023. Springer Nature Switzerland. doi:10.1007/978-3-031-34111-3_1. ↩
-
Marco Drago, Sergey Klimenko, Claudia Lazzaro, Edoardo Milotti, Guenakh Mitselmakher, Valentin Necula, Brendan O’Brian, Giovanni Andrea Prodi, Francesco Salemi, Marek Szczepanczyk, Shubhanshu Tiwari, Vaibhav Tiwari, Gayathri V, Gabriele Vedovato, and Igor Yakushin. Coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis. SoftwareX, 14:100678, June 2021. arXiv:2006.12604, doi:10.1016/j.softx.2021.100678. ↩
-
T. Mishra, B. O’Brien, V. Gayathri, M. Szczepańńczyk, S. Bhaumik, I. Bartos, and S. Klimenko. Optimization of model independent gravitational wave search for binary black hole mergers using machine learning. Physical Review D, 1042:023014, July 2021. arXiv:2105.04739, doi:10.1103/PhysRevD.104.023014. ↩
-
T. Mishra, B. O’Brien, M. Szczepań ńczyk, G. Vedovato, S. Bhaumik, V. Gayathri, G. Prodi, F. Salemi, E. Milotti, I. Bartos, and S. Klimenko. Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning. Physical Review D, 1058:083018, April 2022. arXiv:2201.01495, doi:10.1103/PhysRevD.105.083018. ↩
-
Neil J Cornish and Tyson B Littenberg. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Classical and Quantum Gravity, 3213:135012, June 2015. Comment: 36 pages, 15 figures, Version accepted by Class. Quant. Grav. arXiv:1410.3835, doi:10.1088/0264-9381/32/13/135012. ↩
-
Chris Pankow, Katerina Chatziioannou, Eve A. Chase, Tyson B. Littenberg, Matthew Evans, Jessica McIver, Neil J. Cornish, Carl-Johan Haster, Jonah Kanner, Vivien Raymond, Salvatore Vitale, and Aaron Zimmerman. Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Physical Review D, 988:084016, October 2018. arXiv:1808.03619, doi:10.1103/PhysRevD.98.084016. ↩
-
Alberto Iess, Elena Cuoco, Filip Morawski, and Jade Powell. Core-Collapse supernova gravitational-wave search and deep learning classification. Machine Learning: Science and Technology, 12:025014, June 2020. arXiv:2001.00279, doi:10.1088/2632-2153/ab7d31. ↩
-
Man Leong Chan, Ik Siong Heng, and Chris Messenger. Detection and classification of supernova gravitational wave signals: A deep learning approach. Physical Review D, 1024:043022, August 2020. arXiv:1912.13517, doi:10.1103/PhysRevD.102.043022. ↩
-
Cosmin Stachie, Michael W Coughlin, Nelson Christensen, and Daniel Muthukrishna. Using machine learning for transient classification in searches for gravitational-wave counterparts. Monthly Notices of the Royal Astronomical Society, 4972:1320–1331, September 2020. arXiv:1912.06383, doi:10.1093/mnras/staa1776. ↩
-
Margaret Millhouse, Lucy Strang, and Andrew Melatos. Search for gravitational waves from 12 young supernova remnants with a hidden Markov model in Advanced LIGO’s second observing run. Physical Review D, 1028:083025, October 2020. arXiv:2003.08588, doi:10.1103/PhysRevD.102.083025. ↩
-
M. López, I. Di Palma, M. Drago, P. Cerdá-Durán, and F. Ricci. Deep learning for core-collapse supernova detection. Physical Review D, 1036:063011, March 2021. arXiv:2011.13733, doi:10.1103/PhysRevD.103.063011. ↩↩
-
M. López, M. Drago, I. Di Palma, F. Ricci, and P. Cerdá-Durán. Deep learning algorithms for gravitational waves core-collapse supernova detection. In 2021 International Conference on Content-Based Multimedia Indexing CBMI, 1–6. 2021. doi:10.1109/CBMI50038.2021.9461885. ↩
-
Javier M. Antelis, Marco Cavaglia, Travis Hansen, Manuel D. Morales, Claudia Moreno, Soma Mukherjee, Marek J. Szczepańńczyk, and Michele Zanolin. Using supervised learning algorithms as a follow-up method in the search of gravitational waves from core-collapse supernovae. Physical Review D, 1058:084054, April 2022. arXiv:2111.07219, doi:10.1103/PhysRevD.105.084054. ↩
-
Alejandro Casallas Lagos, Javier M. Antelis, Claudia Moreno, Michele Zanolin, Anthony Mezzacappa, and Marek J. Szczepańczyk. Characterizing the gravitational wave temporal evolution of the gmode fundamental resonant frequency for a core collapse supernova: A neural network approach. April 2023. Comment: 14 pages, 9 figures, 6 tables. arXiv:2304.11498. ↩
-
Christian Röver, Marie-Anne Bizouard, Nelson Christensen, Harald Dimmelmeier, Ik Siong Heng, and Renate Meyer. Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce. Physical Review D, 8010:102004, November 2009. arXiv:0909.1093, doi:10.1103/PhysRevD.80.102004. ↩
-
Kyungmin Kim, Ian W Harry, Kari A Hodge, Young-Min Kim, Chang-Hwan Lee, Hyun Kyu Lee, John J Oh, Sang Hoon Oh, and Edwin J Son. Application of artificial neural network to search for gravitational-wave signals associated with short gamma-ray bursts. Classical and Quantum Gravity, 3224:245002, November 2015. arXiv:1410.6878, doi:10.1088/0264-9381/32/24/245002. ↩
-
V. Gayathri, Dixeena Lopez, Pranjal R. S., Ik Siong Heng, Archana Pai, and Chris Messenger. Enhancing the sensitivity of transient gravitational wave searches with Gaussian mixture models. Physical Review D, 10210:104023, November 2020. arXiv:2008.01262, doi:10.1103/PhysRevD.102.104023. ↩
-
Dixeena Lopez, V. Gayathri, Archana Pai, Ik Siong Heng, Chris Messenger, and Sagar Kumar Gupta. Utilizing Gaussian mixture models in all-sky searches for short-duration gravitational wave bursts. Physical Review D, 1056:063024, March 2022. arXiv:2112.06608, doi:10.1103/PhysRevD.105.063024. ↩
-
Vincent Boudart and Maxime Fays. Machine learning algorithm for minute-long burst searches. Physical Review D, 1058:083007, April 2022. Comment: 14 pages, 15 figures. arXiv:2201.08727, doi:10.1103/PhysRevD.105.083007. ↩
-
A Mitra, B Shukirgaliyev, Y S Abylkairov, and E Abdikamalov. Exploring supernova gravitational waves with machine learning. Monthly Notices of the Royal Astronomical Society, pages stad169, January 2023. Comment: Submitted to MNRAS. 11 pages, 12 figures. Comments are welcome. arXiv:2209.14542, doi:10.1093/mnras/stad169. ↩
-
Marek J. Szczepańczyk, Francesco Salemi, Sophie Bini, Tanmaya Mishra, Gabriele Vedovato, V. Gayathri, Imre Bartos, Shubhagata Bhaumik, Marco Drago, Odysse Halim, Claudia Lazzaro, Andrea Miani, Edoardo Milotti, Giovanni A. Prodi, Shubhanshu Tiwari, and Sergey Klimenko. All-sky search for gravitational-wave bursts in the third Advanced LIGO-Virgo run with coherent WaveBurst enhanced by Machine Learning. October 2022. Comment: 15 pages, 7 figures. arXiv:2210.01754. ↩
-
Alberto Iess, Elena Cuoco, Filip Morawski, Constantina Nicolaou, and Ofer Lahav. LSTM and CNN application for core-collapse supernova search in gravitational wave real data. Astronomy and Astrophysics, 669:A42, 2023. Comment: 10 pages, 13 figures. Accepted by A&A journal. arXiv:2301.09387, doi:10.1051/0004-6361/202142525. ↩
-
Vincent Boudart and Maxime Fays. ALBUS: a machine learning algorithm for gravitational wave burst searches. In 2022 IEEE International Conference on Big Data Big Data, 6599–6601. 2022. doi:10.1109/BigData55660.2022.10020896. ↩
-
Luana M. Modafferi, Rodrigo Tenorio, and David Keitel. Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars. March 2023. Comment: 19 pages, 9 figures. Comments welcome. arXiv:2303.16720. ↩
-
Quirijn Meijer, Melissa Lopez, Daichi Tsuna, and Sarah Caudill. Gravitational-Wave Searches for Cosmic String Cusps in Einstein Telescope Data using Deep Learning. August 2023. Comment: 15 pages, 20 figures. arXiv:2308.12323. ↩
-
Andrei Utina, Francesco Marangio, Filip Morawski, Alberto Iess, Tania Regimbau, Giuseppe Fiameni, and Elena Cuoco. Deep learning searches for gravitational wave stochastic backgrounds. In 2021 International Conference on Content-Based Multimedia Indexing CBMI, 1–6. 2021. doi:10.1109/CBMI50038.2021.9461904. ↩
-
Takahiro S. Yamamoto, Sachiko Kuroyanagi, and Guo-Chin Liu. Deep learning for intermittent gravitational wave signals. Physical Review D, 1074:044032, February 2023. Comment: 13 pages, 11 figures. arXiv:2208.13156, doi:10.1103/PhysRevD.107.044032. ↩
-
Asad Khan, E.A. Huerta, Sibo Wang, Robert Gruendl, Elise Jennings, and Huihuo Zheng. Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey. Physics Letters B, 795:248–258, August 2019. arXiv:1812.02183, doi:10.1016/j.physletb.2019.06.009. ↩
-
Wei Wei, E A Huerta, Bradley C Whitmore, Janice C Lee, Stephen Hannon, Rupali Chandar, Daniel A Dale, Kirsten L Larson, David A Thilker, Leonardo Ubeda, Médéric Boquien, Mélanie Chevance, J M Diederik Kruijssen, Andreas Schruba, Guillermo A Blanc, and Enrico Congiu. Deep transfer learning for star cluster classification: I. application to the PHANGS–HST survey. Monthly Notices of the Royal Astronomical Society, 4933:3178–3193, April 2020. arXiv:1909.02024, doi:10.1093/mnras/staa325. ↩
-
Stephon Alexander, Sergei Gleyzer, Evan McDonough, Michael W. Toomey, and Emanuele Usai. Deep Learning the Morphology of Dark Matter Substructure. The Astrophysical Journal, 8931:15, April 2020. arXiv:1909.07346, doi:10.3847/1538-4357/ab7925. ↩
-
N. Gupta and C. L. Reichardt. Mass Estimation of Galaxy Clusters with Deep Learning. I. Sunyaev–Zel’dovich Effect. The Astrophysical Journal, 9002:110, September 2020. arXiv:2003.06135, doi:10.3847/1538-4357/aba694. ↩
-
Alireza Vafaei Sadr and Farida Farsian. Filling in cosmic microwave background map missing regions via generative adversarial networks. Journal of Cosmology and Astroparticle Physics, 202103:012, March 2021. arXiv:2004.04177, doi:10.1088/1475-7516/2021/03/012. ↩
-
Philip, N. S., Wadadekar, Y., Kembhavi, A., and Joseph, K. B. A difference boosting neural network for automated star-galaxy classification. Astronomy and Astrophysics, 3853:1119–1126, 2002. arXiv:astro-ph/0202127, doi:10.1051/0004-6361:20020219. ↩
-
N.S. Philip, A. Mahabal, S. Abraham, R. Williams, S.G. Djorgovski, A. Drake, C Donalek, and M. Graham. Classification by boosting differences in input vectors: An application to datasets from astronomy. arXiv preprint arXiv:1211.3607, November 2012. arXiv:1211.3607. ↩
-
Iftach Sadeh. Data-driven Detection of Multimessenger Transients. The Astrophysical Journal, 8942:L25, May 2020. arXiv:2005.06406, doi:10.3847/2041-8213/ab8b5f. ↩
-
Guo-Jian Wang, Si-Yao Li, and Jun-Qing Xia. ECoPANN: A Framework for Estimating Cosmological Parameters Using Artificial Neural Networks. The Astrophysical Journal Supplement Series, 2492:25, August 2020. arXiv:2005.07089, doi:10.3847/1538-4365/aba190. ↩
-
Yunfei Xu, Dong Xu, Chenzhou Cui, Dongwei Fan, Zipei Zhu, Bangyao Yu, Changhua Li, Jun Han, Linying Mi, Shanshan Li, Boliang He, Yihan Tao, Hanxi Yang, and Sisi Yang. GWOPS: A VO-technology Driven Tool to Search for the Electromagnetic Counterpart of Gravitational Wave Event. Publications of the Astronomical Society of the Pacific, 1321016:104501, September 2020. arXiv:2009.03497, doi:10.1088/1538-3873/aba69f. ↩
-
Sara Milosevic, Philipp Frank, Reimar H. Leike, Ancla Müller, and Torsten A. Enßlin. Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders. Astronomy and Astrophysics, 650:A100, September 2020. arXiv:2009.06608, doi:10.1051/0004-6361/202039435. ↩
-
Héctor J. Hortúa, Riccardo Volpi, Dimitri Marinelli, and Luigi Malagò. Parameter estimation for the cosmic microwave background with Bayesian neural networks. Physical Review D, 10210:103509, November 2020. arXiv:1911.08508, doi:10.1103/PhysRevD.102.103509. ↩
-
José Manuel Zorrilla Matilla, Manasi Sharma, Daniel Hsu, and Zoltán Haiman. Interpreting deep learning models for weak lensing. Physical Review D, 10212:123506, December 2020. arXiv:2007.06529, doi:10.1103/PhysRevD.102.123506. ↩
-
Eric Guzman and Joel Meyers. Reconstructing patchy reionization with deep learning. Physical Review D, 1044:043529, August 2021. arXiv:2101.01214, doi:10.1103/PhysRevD.104.043529. ↩
-
Alexander Bonilla, Suresh KuMar, Rafael C. Nunes, and Supriya Pan. Reconstruction of the dark sectors’ interaction: A model-independent inference and forecast from GW standard sirens. arXiv preprint arXiv:2102.06149, February 2021. arXiv:2102.06149. ↩
-
Xin Ren, Thomas Hong Tsun Wong, Yi-Fu Cai, and Emmanuel N. Saridakis. Data-driven reconstruction of the late-time cosmic acceleration with fT gravity. Physics of the Dark Universe, 32:100812, May 2021. arXiv:2103.01260, doi:10.1016/j.dark.2021.100812. ↩
-
Tao Yang. Gravitational-wave detector networks: standard sirens on cosmology and modified gravity theory. Journal of Cosmology and Astroparticle Physics, 202105:044, May 2021. arXiv:2103.01923, doi:10.1088/1475-7516/2021/05/044. ↩
-
Ming-Zhe Han, Jin-Liang Jiang, Shao-Peng Tang, and Yi-Zhong Fan. Bayesian Nonparametric Inference of the Neutron Star Equation of State via a Neural Network. The Astrophysical Journal, 9191:11, September 2021. arXiv:2103.05408, doi:10.3847/1538-4357/ac11f8. ↩
-
Matthew C. Edwards. Classifying the equation of state from rotating core collapse gravitational waves with deep learning. Physical Review D, 1032:024025, January 2021. arXiv:2009.07367, doi:10.1103/PhysRevD.103.024025. ↩
-
Priyamvada Natarajan, Kwok Sun Tang, Sadegh Khochfar, Brian Nord, Steinn Sigurdsson, Joe Tricot, Nico Cappelluti, Daniel George, and Jack Hidary. QuasarNet: A new research platform for the data-driven investigation of black holes. arXiv preprint arXiv:2103.13932, 2021. arXiv:2103.13932. ↩
-
Emilio Elizalde, Janusz Gluza, and Martiros Khurshudyan. An approach to cold dark matter deviation and the H\_0 tension problem by using machine learning. arXiv preprint arXiv:2104.01077, April 2021. arXiv:2104.01077. ↩
-
Isidro Gómez-Vargas, J. Alberto Vázquez, Ricardo Medel Esquivel, and Ricardo García-Salcedo. Cosmological reconstructions with artificial neural networks. arXiv preprint arXiv:2104.00595, April 2021. arXiv:2104.00595. ↩
-
H. Tilaver, M. Salti, O. Aydogdu, and E.E. Kangal. Deep learning approach to Hubble parameter. Computer Physics Communications, 261:107809, April 2021. doi:10.1016/j.cpc.2020.107809. ↩
-
Francesca Gerardi, Stephen M. Feeney, and Justin Alsing. Unbiased likelihood-free inference of the Hubble constant from light standard sirens. Physical Review D, 1048:083531, October 2021. arXiv:2104.02728, doi:10.1103/PhysRevD.104.083531. ↩
-
A. M. Velasquez-Toribio and J. C. Fabris. Constraints on cosmographic functions using gaussian processes. arXiv preprint arXiv:2104.07356, April 2021. arXiv:2104.07356. ↩
-
Guadalupe Cañas-Herrera, Omar Contigiani, and Valeri Vardanyan. Learning How to Surf: Reconstructing the Propagation and Origin of Gravitational Waves with Gaussian Processes. The Astrophysical Journal, 9181:20, August 2021. arXiv:2105.04262, doi:10.3847/1538-4357/ac09e3. ↩
-
Adam Rouhiainen, Utkarsh Giri, and Moritz Münchmeyer. Normalizing flows for random fields in cosmology. arXiv preprint arXiv:2105.12024, May 2021. arXiv:2105.12024. ↩
-
M. Mancarella, J. Kennedy, B. Bose, and L. Lombriser. Seeking new physics in cosmology with Bayesian neural networks: Dark energy and modified gravity. Physical Review D, 1052:023531, January 2022. Comment: 19+9 pages, 16 figures, code available at https://github.com/Mik3M4n/BaCoN, data available at https://doi.org/10.5281/zenodo.4309918. v2: matches version accepted for publication in PRD. v3: title matches published version. arXiv:2012.03992, doi:10.1103/PhysRevD.105.023531. ↩
-
Rahul Shah, Arko Bhaumik, Purba Mukherjee, and Supratik Pal. A thorough investigation of the prospects of eLISA in addressing the Hubble tension: Fisher Forecast, MCMC and Machine Learning. January 2023. Comment: 27 pages, 11 sets of figures, 6 tables. arXiv:2301.12708. ↩
-
Gregory Ashton. Gaussian processes for Glitch-robust Gravitational-wave astronomy. Monthly Notices of the Royal Astronomical Society, pages stad341, February 2023. doi:10.1093/mnras/stad341. ↩
-
Thomas A. Callister and Will M. Farr. A Parameter-Free Tour of the Binary Black Hole Population. February 2023. Comment: 24 pages, 14 figures; code can be found at http://github.com/tcallister/autoregressive-bbh-inference and data can be download from https://zenodo.org/record/7616096. arXiv:2302.07289. ↩
-
Jeff Riley and Ilya Mandel. Probing cosmic history with merging compact binaries. February 2023. Comment: 16 pages, 3 tables, 8 figures. arXiv:2303.00508. ↩
-
Purba Mukherjee, Rahul Shah, Arko Bhaumik, and Supratik Pal. Reconstructing the Hubble parameter with future Gravitational Wave missions using Machine Learning. March 2023. Comment: 9 pages, 5 sets of figures. arXiv:2303.05169. ↩
-
James Alvey, Mathis Gerdes, and Christoph Weniger. Albatross: A scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way. April 2023. Comment: 17 pages, 6 figures. Codes: sstrax available for download at https://github.com/undark-lab/sstrax, albatross at https://github.com/undark-lab/albatross. arXiv:2304.02032. ↩
-
Chris Whittle, Ge Yang, Matthew Evans, and Lisa Barsotti. Machine Learning for Quantum-Enhanced Gravitational-Wave Observatories. May 2023. arXiv:2305.13780. ↩
-
Niharika Sravan, Matthew J. Graham, Michael W. Coughlin, Tomas Ahumada, and Shreya Anand. Machine-directed gravitational-wave counterpart discovery. July 2023. Comment: Submitted to the Astrophysical Journal; Comments welcome! arXiv:2307.09213. ↩
-
Shotaro Shiba Funai and Dimitrios Giataganas. Thermodynamics and feature extraction by machine learning. Physical Review Research, 23:033415, September 2020. arXiv:1810.08179, doi:10.1103/PhysRevResearch.2.033415. ↩
-
Philip G Breen, Christopher N Foley, Tjarda Boekholt, and Simon Portegies Zwart. Newton versus the machine: solving the chaotic three-body problem using deep neural networks. Monthly Notices of the Royal Astronomical Society, 4942:2465–2470, May 2020. arXiv:1910.07291, doi:10.1093/mnras/staa713. ↩
-
Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., June 2019. arXiv:1906.01563. ↩
-
Omry Cohen, Or Malka, and Zohar Ringel. Learning curves for overparametrized deep neural networks: A field theory perspective. Physical Review Research, 32:023034, April 2021. arXiv:1906.05301, doi:10.1103/PhysRevResearch.3.023034. ↩
-
Shawn G. Rosofsky and E. A. Huerta. Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence. Physical Review D, 1018:084024, April 2020. arXiv:1912.11073, doi:10.1103/PhysRevD.101.084024. ↩
-
Daniel Tamayo, Miles Cranmer, Samuel Hadden, Hanno Rein, Peter Battaglia, Alysa Obertas, Philip J. Armitage, Shirley Ho, David N. Spergel, Christian Gilbertson, Naireen Hussain, Ari Silburt, Daniel Jontof-Hutter, and Kristen Menou. Predicting the long-term stability of compact multiplanet systems. Proceedings of the National Academy of Sciences, 11731:18194, August 2020. arXiv:2007.06521, doi:10.1073/pnas.2001258117. ↩
-
Gregory M. Green and Yuan-Sen Ting. Deep potential: Recovering the gravitational potential from a snapshot of phase space. In arXiv Preprint arXiv:2011.04673. November 2020. arXiv:2011.04673. ↩
-
Ziming Liu and Max Tegmark. Machine Learning Conservation Laws from Trajectories. Physical Review Letters, 12618:180604, May 2021. arXiv:2011.04698, doi:10.1103/PhysRevLett.126.180604. ↩
-
Luisa Lucie-Smith, Hiranya V. Peiris, Andrew Pontzen, Brian Nord, and Jeyan Thiyagalingam. Deep learning insights into cosmological structure formation. arXiv preprint arXiv:2011.10577, November 2020. arXiv:2011.10577. ↩
-
Kai Hou Yip, Quentin Changeat, Nikolaos Nikolaou, Mario Morvan, Billy Edwards, Ingo P. Waldmann, and Giovanna Tinetti. Peeking inside the Black Box: Interpreting Deep-learning Models for Exoplanet Atmospheric Retrievals. The Astronomical Journal, 1625:195, October 2021. arXiv:2011.11284, doi:10.3847/1538-3881/ac1744. ↩
-
Thorsten Glüsenkamp. Unifying supervised learning and VAEs – automating statistical inference in high-energy physics. arXiv preprint arXiv:2008.05825, August 2020. arXiv:2008.05825. ↩
-
David Rousseau and Andrey Ustyuzhanin. Machine Learning Scientific Competitions and Datasets. In Artificial Intelligence for High Energy Physics, pages 765–812. WORLD SCIENTIFIC, December 2020. arXiv:2012.08520v1. ↩
-
Miles Cranmer, Daniel Tamayo, Hanno Rein, Peter Battaglia, Samuel Hadden, Philip J. Armitage, Shirley Ho, and David N. Spergel. A Bayesian neural network predicts the dissolution of compact planetary systems. Proceedings of the National Academy of Sciences, 11840:e2026053118, October 2021. arXiv:2101.04117, doi:10.1073/pnas.2026053118. ↩
-
Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 11821:e2101784118, May 2021. arXiv:2102.01010, doi:10.1073/pnas.2101784118. ↩
-
Jim C Visschers, Dmitry Budker, and Lykourgos Bougas. Rapid parameter estimation of discrete decaying signals using autoencoder networks. Machine Learning: Science and Technology, 24:045024, September 2021. arXiv:2103.08663, doi:10.1088/2632-2153/ac1eea. ↩
-
Veronica Guidetti, Francesco Muia, Yvette Welling, and Alexander Westphal. dNNsolve: an efficient NN-based PDE solver. arXiv preprint arXiv:2103.08662, March 2021. arXiv:2103.08662. ↩
-
Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark, and Tie-Yan Liu. Machine-learning nonconservative dynamics for new-physics detection. Physical Review E, 1045:055302, November 2021. arXiv:2106.00026, doi:10.1103/PhysRevE.104.055302. ↩
-
Shawn G Rosofsky, Hani Al Majed, and E A Huerta. Applications of physics informed neural operators. Machine Learning: Science and Technology, 42:025022, May 2023. Comment: 15 pages, 10 figures. arXiv:2203.12634, doi:10.1088/2632-2153/acd168. ↩
-
Ryota Katsube, Wai-Hong Tam, Masahiro Hotta, and Yasusada Nambu. Deep learning metric detectors in general relativity. Physical Review D, 1064:044051, August 2022. Comment: 26 pages, 19 figures. arXiv:2206.03006, doi:10.1103/PhysRevD.106.044051. ↩
-
Raimon Luna, Juan Calderón Bustillo, Juan José Seoane Martínez, Alejandro Torres-Forné, and José A. Font. Solving the Teukolsky equation with physics-informed neural networks. December 2022. Comment: 12 pages, 7 figures. arXiv:2212.06103. ↩
-
Ehsan Hatefi, Armin Hatefi, and Roberto J. López-Sastre. Analysis of Black Hole Solutions in Parabolic Class Using Neural Networks. February 2023. Comment: 20 pages, 13 figures. arXiv:2302.04619. ↩
-
Federico Sabbatini and Catia Grimani. Solar Wind Speed Estimate with Machine Learning Ensemble Models for LISA. February 2023. Comment: Submitted to Environmental Modelling & Software. arXiv:2302.06740. ↩
-
Peter Xiangyuan Ma and Gabriele Vajente. A deep learning technique to control the non-linear dynamics of a gravitational-wave interferometer. Classical and Quantum Gravity, 414:045003, January 2024. arXiv:2302.07921, doi:10.1088/1361-6382/ad1daa. ↩
-
Shawn G. Rosofsky and E. A. Huerta. Magnetohydrodynamics with Physics Informed Neural Operators. February 2023. Comment: 13 pages, 9 figures, 1 table. First application of physics informed neural operators to solve magnetohydrodynamics equations. arXiv:2302.08332. ↩
-
Sung Hak Lim, Eric Putney, Matthew R. Buckley, and David Shih. Mapping Dark Matter in the Milky Way using Normalizing Flows and Gaia DR3. May 2023. Comment: 19 pages, 13 figures, 3 tables. arXiv:2305.13358. ↩
-
Konstantinos F. Dialektopoulos, Purba Mukherjee, Jackson Levi Said, and Jurgen Mifsud. Neural network reconstruction of scalar-tensor cosmology. May 2023. arXiv:2305.15500. ↩
-
Ziming Liu and Max Tegmark. Machine-learning hidden symmetries. Physical Review Letters, 12818:180201, May 2022. Comment: Replaced to match accepted PRL version. Improved training, discussion & noise modeling. 14 pages & 4 figs including supplementary material. arXiv:2109.09721, doi:10.1103/PhysRevLett.128.180201. ↩