Space-based Data Analysis

Rapid Parameter Estimation for Merging Massive Black Hole Binaries Using Continuous Normalizing Flows

Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as LISA, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great …

Gravitational Wave Signal Denoising and Merger Time Prediction By Deep Neural Network

The mergers of massive black hole binaries could generate rich electromagnetic emissions, which allow us to probe the environments surrounding these massive black holes and gain deeper insights into the high energy astrophysics. However, due to the …

Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning

Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy owing to their low-frequency nature and highly complex waveforms, which occupy a high-dimensional parameter space with numerous variables. …

Challenges in space-based gravitational wave data analysis and applications of artificial intelligence

As space-based gravitational wave detection projects such as LISA, Taiji, and Tianqin continue to advance, we are on the cusp of gaining a new viewpoint on observing the universe.However, the scientific data processing for these projects faces …

Gravitational wave signal extraction against non-stationary instrumental noises with deep neural network

Sapce-borne gravitational wave antennas, such as LISA and LISA-like mission (Taiji and Tianqin), will offer novel perspectives for exploring our Universe while introduce new challenges, especially in data analysis. Aside from the known challenges …