空间引力波探测中关于信号处理分析的研究

Research on Data Analysis of Signals in Space-Based Gravitational Wave Detection

学科、专业：计算数学
研究方向：信号处理
申请学位类别：理学硕士
申请人：张婧婷
指导教师：刘润球教授

二〇一八年六月
Research on Data Analysis of Signals in Space-Based Gravitational Wave Detection

A Dissertation Submitted to
the Graduate School of Henan University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

By
Zhang Jingting
Supervisor: Professor Liu Runqiu
Date: June, 2018
关于学位论文独创声明和学术诚信承诺

本人向河南大学提出硕士学位申请。本人郑重声明：所呈交的学位论文是本人在导师的指导下独立完成的，对所研究的课题有新的见解。据我所知，除文中特别加以说明、标注和致谢的地方外，论文中不包括其他人已经发表或撰写过的研究成果，也不包括其他人为获得任何教育、科研机构的学位或证书而使用过的材料。与我一同工作的同事对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

在此本人郑重承诺：所呈交的学位论文不存在舞弊作伪行为，文责自负。

学位申请人(学位论文作者)签名：张婧婷

2018年6月2日

关于学位论文著作权使用授权书

本人经河南大学审核批准授予硕士学位。作为学位论文的作者，本人完全了解并同意河南大学有关保留、使用学位论文的要求，即河南大学有权向国家图书馆、科研信息机构、数据集成机构和本校图书馆等提供学位论文（纸质文本和电子文本）以供公众检索、查阅。本人授权河南大学出于宣传、展览学校学术发展和进行学术交流等目的，可以采取影印、缩印、扫描和拷贝等复制手段保存、汇编学位论文（纸质文本和电子文本）。

（涉及保密内容的学位论文在解密后适用本授权书）

学位获得者(学位论文作者)签名：张婧婷

2018年6月2日

学位论文指导教师签名：李国强

2018年6月2日
摘要

1916年，爱因斯坦正式发表了广义相对论，在理论上预言了引力波的存在。引力波是时空几何动力学的重要现象，可以看做时空曲率扰动以波动的形式在时空背景中的传播。经过了一个世纪的发展，2016年2月11日，美国激光干涉引力波天文台（LIGO）宣布探测到了引力波信号，该信号是由双黑洞并合释放出来的。引力波源的种类十分丰富，释放引力波的频段范围也十分宽广。虽然地面探测器的精度在不断提高，但是由于地表震动等原因并不能探测到低频引力波。所以在20世纪90年代，美国宇航局和欧空局合作提出了空间引力波探测项目（LISA）。我国也在积极开展空间引力波探测的研究，经过两期科学院先导科技专项空间科学预研究课题的开展，通过权衡技术可行性和科学目标的需求，给出了我国空间引力波探测计划的初步设计。探测到引力波信号并不是我们的最终目的，我们需要通过探测到的引力波信号了解波源以及波形的信息。为了促进空间引力波探测的发展，LISA国际科学组织在LISA国际会议上提出了模拟LISA数据挑战（MLDC）。为迎接新一轮的MLDC挑战做准备，本文根据中国科学院两期先导研究的任务设计进行模拟实验。

本文重点研究模拟探测器的输出数据和引力波数据处理方面的工作。因为我国空间引力波探测计划一直处于研究阶段还没有发射到太空中，没有真实的输出数据，所以文中按照MLDC的模拟数据的标准进行数据模拟。本文选取空间探测目标波源中的一种，即双白矮星系统，按照中国科学院两期先导研究的任务设计进行模拟探测器输出数据，主要模拟了探测器的轨道、双白矮星释放的引力波信号、探测器的仪器噪声等。然后再对模拟出来的数据进行处理，因为双白矮星系统的波源是单频信号，需要估计的参数空间比较简单，只需要对7个参数进行估计便可以知道波源的一些性质。

在进行数据处理的过程中，主要使用了匹配滤波、$F - Statistic$的方法进行参数估计。匹配滤波技术主要用于在噪声中提取引力波信号，我们考虑将噪声数据和引力波信号做内积，将最大内积对应的物理参数作为估计值。$F - Statistic$ 主要用来降低参数空间，把7维的参数空间降低成3维的参数空间，最后再计算出4个外部参数。最后，我们考虑采用MLDC的评估标准来评估整个实验的结果。

关键词： 引力波；空间探测；双白矮星；数据分析
空间引力波探测中关于信号处理分析的研究
ABSTRACT

In 1916, Albert Einstein officially published the general theory of relativity, in theory, predicted the existence of gravitational waves. Gravitational waves are important phenomena in space-time geometric dynamics. They can be seen as the propagation of spatio-temporal curvature perturbations in the form of waves in space-time background. After a century of development, Laser Interferometer Gravitational-Wave Observatory (LIGO) announced the gravitational wave signal in February 11, 2016, which was from the double black hole merging. There are so many kinds of gravitational wave sources, and the frequency range of gravitational waves is also very wide. Although the precision of the ground-based detectors are increasing, the low frequency gravitational wave can not be detected because of the ground motion. So in 1990s, NASA and ESA proposed the space-based gravitational wave detection project, Laser Interferometer Space Antenna (LISA). In China, scientists are developing space-based gravitational wave detection. By striking a balance between science and technological feasibility, the preliminary mission design of gravitational wave detection in space is done by the Chinese Academy of Sciences. The space gravitational wave detection is mainly based on the low frequency gravitational wave detection. It is not our ultimate aim to detect the gravitational wave signal. We need to acquire the information of the wave source and the waveform by analyzing the gravitational wave signals detected. In order to promote the development of the space gravitational wave detection, the LISA international science organization proposed the simulation of the LISA data challenge (MLDC) at the LISA International Conference. In preparation for the new round of MLDC, the article focuses on the gravitational wave data analysis, based on the feasibility study by the Chinese Academy of Scinence.

The article focuses on mocking data and the gravitational wave data analysis, based on the feasibility study by the Chinese Academy of Science. Because the space-based gravitational wave detection program has been in the research and it has not yet been launched into space, there is no real output data, so we mock data according to the MLDC standard. White-dwarf binaries is selected to simulate the detectors output data in this paper, mainly to simulate the detectors track, the gravitational wave signals of white-dwarf binaries, detectors instrument noise etc. Then we need to analyze the simulation
data. It is relatively simple to estimate the parameters because the gravitational wave signals of white-dwarf binaries are single frequency signals. We can know some properties of sources by estimating seven parameters.

In the process of data analysis, mainly using the matched filter, $F - Statistic$ method for parameter estimation. Matched filter is mainly used to extract gravitational wave signal from noisy data, and we need to calculate the inner product of gravitational wave signal and noisy data. The physical parameters corresponding the maximum inner product is usually taken as the estimate. $F - Statistic$ can be used to reduce the parameters, reduce the original 7-dimensional parameter space to 3-dimensional parameter space, and finally we also need to calculate 4 external parameters. Finally, we consider using MLDC’s evaluation criteria to evaluate the results of the whole experiment.

KEY WORDS: Gravitational waves; Space-based detection; White Dwarf Binaries; Data analysis
目录

摘要 ... I
ABSTRACT .. III

第一章 绪论 .. 1
 §1.1 研究背景和意义 ... 1
 §1.2 论文结构和思路 ... 4
 §1.3 定义与记号 ... 6

第二章 引力波 ... 9
 §2.1 引力波源 ... 9
 §2.2 国外引力波探测 ... 14
 §2.3 引力波数据处理分析 ... 23

第三章 模拟双白矮星的探测数据 ... 27
 §3.1 我国空间引力波探测预研究 ... 27
 §3.2 模拟探测器的轨道 ... 29
 §3.3 模拟仪器噪声 ... 31
 §3.4 模拟引力波信号 ... 31
 §3.5 模拟探测器输出的数据 ... 36

第四章 引力波数据处理分析 ... 43
 §4.1 离散傅里叶变换 ... 43
 §4.2 数据处理的方法 ... 44
 §4.3 数据处理分析的过程 ... 48

第五章 结论与展望 ... 53
第一章 绪论

§1.1 研究背景和意义

1915年，爱因斯坦提出了广义相对论，改变了对引力和时空的理解。1916年，爱因斯坦正式发表了广义相对论，在广义相对论的框架内，论证了时空的曲率以波动的形式传播。经过多年的发展，广义相对论已经成为现代物理学中的基础理论，它在天体物理学中起着至关重要的作用。

广义相对论预测了引力波的存在，它为引力波的存在提供了理论支持。在静态的时空动力学演化中，引力波是时空几何动力学的重要现象，可以看做时空曲率扰动以波动的形式在时空背景中的传播。类似于电磁波，引力波是一个变化的引力场，可以被看作是在静态时空背景上传播的时空波纹。引力波是引力波源的运动或者质量变化引起的时空几何的改变。但是引力波的强度很小，对时空几何的改变非常微弱（比如：距离室女星团15Mpc处的双中子星并合，产生的引力波经过地球时的强度大约为$ h = 10^{-21}$），所以想要探测到这种微小的变化十分困难，这对人类精密的测量能力提出了挑战。

上世纪60年代中期，世界上出现了第一个引力波探测器，由Joseph Weber在美国Maryland大学建成，该装置是由一个铝棒（重1.4吨）及其附属装置组成的（如图1.1所示）。1969年，Weber宣布探测到了引力波，但是后来相继建立的更高灵敏度的引力波探测器并没有探测到Weber提到的结果，所以Weber宣称探测到来自银河系中心的引力波的这个结论并不能被科学界所接受。虽然此实验装置并没有探测到引力波，但是这次实验也具有十分重要的意义，开创了直接探测引力波的先河。1974年Hulse和Taylor发现了脉冲双星PSR1913+16，间接证明了引力波的存在，这个成果在1993年荣获诺贝尔物理学奖。随后，对更过类似的天体系统进行了观测，特别是双脉冲星（PSR J0348+0432）和双脉冲星（PSR J0737–3039）的发现和测量，进一步验证广义相对论关于引力波的预言，也让科学家们更加坚定了直接探测引力波、证明引力波存在的想法。

2016年2月11日，美国的激光干涉仪引力波天文台(Laser Interferometer Gravitational-Wave Observatory，LIGO)宣布首次探测到了引力波。探测到的引力波的波源是距离地球410Mpc的双黑洞并合，记为GW150914。两个黑洞的质量分别是29个太阳质量和36个太阳质量，并合后形成62个太阳质量的黑洞，另外3个太阳的质量转化成引力波辐射出来。
空间引力波探测中关于信号处理分析的研究

这一重大发现直接验证了广义相对论的预言，无疑是一个振奋人心的消息。

随着LIGO探测到引力波，人们越来越希望通过探测引力波来认识天体物理现象。宇宙中引力波的波源种类十分丰富，引力波谱涵盖了宽广的频率范围，虽然地面激光引力波干涉仪的测量精度在不断提高，但是地面激光引力波干涉仪的探测频段在十到千赫兹之间（比如：LIGO的工作频率在$10Hz - 1000Hz$），地面探测器容易受到地表震动的影响而成为探测低频引力波的障碍。为了探测较低频段的引力波，探测更丰富的波源发出的引力波，就需要避免地表噪声的影响，所以探测低频引力波探测需要把干涉仪放入空间中开展探测工作。

20世纪90年代，美国宇航局（National Aeronautics and Space Administration, NASA）和欧空局（European Space Agency, ESA）合作提出了空间引力波探测项目，这也是
目前世界上相对成熟的空间引力波探测计划。对于空间激光引力波探测器LISA（Laser Interferometer Space Antenna），它的工作频率为0.1mHz - 1Hz。LISA以太阳为圆心进行绕转，与地球绕太阳旋转的轨道类似，有三个独立的卫星在空间中形成等边三角形，并且平均臂长为五百万公里。后来因为美国宇航局的退出和欧洲经费减少，LISA发展成eLISA（evolved LISA）。2015年LISA-Pathfinder 发射，并于2017年成功完成技术演示[39]。

我国也在发展空间引力波探测，被列入中国科学院的空间2050年规划中。2008年，中国科学院力学研究所微重力实验室发起，科学院多个研究所和院外高校科研单位参与，组成了科学院空间引力波探测论证组。经过参与人员的努力，科学院两期先导研究给出了较明确的概念规划。计划发射3颗卫星形成等边三角形，臂长的量级为10^8km，主要对中低频（< 10^{-8} - 10Hz）的引力波进行探测[25]。另外，我国发展空间引力波探测的另一个可能是通过国际合作参与欧洲的eLISA 计划。

空间引力波探测在空间中可以避免来自地球的噪声并且由于极长的臂长可以获得地面探测器无法探测的频段。空间引力波探测器可以探测到低频引力波，表示可以寻找有更长波长的引力波、质量更大的波源，其探测范围扩大到了更丰富的引力波波源。研究引力波有着巨大的潜力，我们可以通过引力波来发现宇宙的秘密，例如黑洞、大爆炸以及其他未知的天体，将帮助我们探索宇宙的开始、演化和结构等。由于地面引力波探测器和空间引力波探测器的工作频段不同，所以只有地面探测器和空间探测器相互补充，才能为探索宇宙提供更多的可能。

银河系双白矮星系统（White Dwarf Binaries, WDB）是空间引力波探测任务中将要探测的重要的引力波源，白矮星双星系统释放的引力波的频段刚好在空间引力波探测器工作的频段范围内。虽然银河系内白矮星质量很小，相对于双黑洞系统释放的引力波较弱，但是距离我们很近、数量众多，事件发生率高，探测器不用刻意的捕捉它们释放的引力波信号，只需要在空间引力波探测器开始工作之后积累信号。更重要的是白矮星双星系统作为引力波源是确定的，它们存在于银河系中。

当我们检测到引力波之后，需要从引力波信号中还原一些波形和波源的物理信息，所以我们需要开展后续的数据处理工作。引力波的波形是由振幅和频率来描述的，干涉仪探测到的引力波信号输出的时间序列是引力波信号和噪声的叠加，所以我们要把引力波信号从噪声中提取出来，即引力波数据处理。引力波数据处理是引力波天文学的核心部分，我们需要正确描述存在于引力波探测器释放的数据中的引力波信号。因为引力波信号微弱，大多数引力波信号都埋藏在很强的噪声中，所以需要设计高精度的算法和有
空间引力波探测中关于信号处理分析的研究

有效的方法去检测和提取引力波信号。甚至当引力波信号很强的时候，仍然需要恰当的算法从观测到的数据中提取引力波信号以及其他物理信息。怎样准确快速地提取引力波信号，这个问题并没有完全解决。

许多数据处理的文章都致力于地面引力波探测的数据处理，但是地面探测器和空间探测器在处理数据技术方面有很多的不同，随着空间引力波探测项目的发展就要逐渐发展空间探测的引力波数据处理技术。模拟LISA数据挑战（MLDC，Mock LISA Data Challenge）在很大程度上促进了空间探测的引力波数据处理的发展，它不仅促进了LISA数据处理分析技术的提高，还模拟了LISA数据的预期复杂性。LISA国际科学组（LISA International science Team, LIST）在2005年开始组织模拟LISA数据挑战（MLDC），MLDC的任务主要是释放模拟数据供全世界参与者分析处理，为参与者提供一定的支持，并建立统一的符号和评估标准对参与者提交的结果进行评价，并且MLDC会把参与者使用的方法与结果公布出来供大家参考。MLDC释放的模拟LISA的数据是模拟入射的引力波经过仪器响应加上人工模拟的LISA噪声形成的，这些数据包括训练数据（Training Data）和盲数据（Blind Data），训练数据的参数在公布数据的同时也会公布出来，所以来调查自己的方法和程序，而盲数据是实际要提取引力波信号的数据，需要还原各种参数以确定波形和源的位置并提交。

目前，MLDC已经进行到Round 4，随着轮数的增加难度会越来越大，波源不断增多、时间序列越来越长以及参数空间越来越大等。我国数据团队曾经参与了MLDC 1B的挑战并取得了不错的成绩，新一轮的MLDC预计将在今年开始，这次中国数据团队将再次参加挑战，在挑战中学习和提高数据处理的技术。

空间引力波数据处理大都是基于LISA进行的模拟实验，本文的研究是根据我国空间引力波探测预研阶段的任务设计开展的，针对中国科学院二期先导研究的任务设计模拟输出数据并进行处理分析。此次模拟实验也为中国今年参加新一轮的MLDC做准备，参加新一轮的MLDC在一定程度上会促进我国空间引力波数据处理技术的发展，也在国际上展示了中国数据处理技术。双矮星系统作为引力波源数量众多，也为下一步提取百万量级的双矮星的引力波信号迈出第一步。进行空间引力波数据处理的模拟实验，不仅能够在一定程度上提高数据处理的技术，了解更多天体的物理性质，也为将来人们校准和评价探测器和数据处理技术提供了标准。
第一章 绪论

§1.2 论文结构和思路

本文主要根据中国科学院先导二期的研究以及其任务设计，按照MLDC模拟数据的过程，对银河系内双矮星系统的探测数据进行模拟，具有一定的严密性。然后运用匹配滤波和F统计量的方法进行数据处理，最终提取引力波信号并估计参数。

文中模拟双矮星系统辐射的引力波信号加到合适的噪声上产生模拟数据，模拟数据的产生都是基于现有的任务设计和理论基础。然后用匹配滤波技术、F统计量（F-Statistic）的方法从噪声中提取引力波信号进行参数估计，还原波形以及源的信息。因为银河系双矮星系统辐射的引力波是单频信号，所以在信号频率附近我们将噪声看成是白噪声。另外因为波源是双矮星双星系统，运用匹配滤波技术的参数空间是二维的，所以我们进行参数估计时只需要找出7个参数，包括频率f、振幅h_0、极化角ψ（源坐标系与探测器坐标系重合需要旋转的角度）、初始相位φ_0、黄经黄纬{θ, φ}(双矮星系统在天球中的位置)、倾角i(双星轨道面相对于地球黄道面的倾角)。我们用F-Statistic将参数分为三个内部参数{f, θ, φ}和四个外部参数{h_0, ψ, φ_0, i}，它们对信号的频率和振幅的调制作用是不是一样的。

本文的结果是对参数误差进行评估和对整体的估计进行检测，整体的检测结果为C=0.9729，与完美的检测值C = 1非常接近，整体是一个很好的检测，参数的误差在分析结果的章节有所体现。

本文的具体章节的主要内容如下：

第一章：绪论。在本章节中简单介绍了本文的研究背景、引力波的发现、空间引力波探测以及数据处理的意义，讲明了论文的结构和思路，并给出了一些符号的定义和记法以便文章的叙述。

第二章：引力波。本章主要分为三个部分：第一小节主要详细介绍了产生引力波的波源，主要有双黑洞的并合、双中子星的并合、超大质量比绕旋系统、中等质量比绕旋系统、双白矮星系统、随机背景引力波等；第二小节主要讲述了国外有关引力波探测的相关内容，包括引力波探测的成果和国外引力波探测试验现状；第三小节主要讲述了引力波数据处理，让我们对数据处理有一个简单的认识和理解。

第三章：模拟引力波信号。因为考虑到我国空间引力波探测计划还处于预研阶段，引力波探测器还没有发射到太空中，所以我们基于预研阶段的任务设计开展模拟工作。本章主要分为五个部分：第一小节讲述了我国空间引力波探测的任务设计；第二小节对我
空间引力波探测中关于信号处理分析的研究

国预研阶段任务设计的轨道进行了数学表达；第三小节探究了数据处理过程中需要的噪声；第四小节主要研究如何模拟引力波信号，因为有确定的双白矮星系统作为引力源，所以我们可以基于现有理论的基础上准确地模拟出引力波信号；第五小节主要研究了数据输出的过程，供之后进行数据处理使用。

第四章：数据处理分析。对于模拟的空间探测器输出的数据，我们进行处理和分析。本章主要分为三个部分：第一小节介绍了数据处理过程中用到了关于离散傅里叶变换的理论知识；第二小节探究了处理数据的方法，考虑到要提取引力波信号和估计参数，所以我们使用匹配滤波技术来提取引力波信号，用 $\mathcal{F} - Statistic$ 来达到降维的目的；第三小节是基于以上方法探究了数据处理分析的详细过程，提取出引力波信号，并进行参数估计。

第五章：结论与展望。在本章中按照MLDC的评估标准给出了文中的评估标准，并进行结果分析，指出了文章的优点和不足，并展望未来。

§1.3 定义与记号

为方便本文的叙述和理解，我们进行一些约定。本文的工作都是基于中国科学院两期先导科学研究制定的空间引力波探测的任务设计进行的，接下来给出一些约定的符号和记法。

\[G: \text{引力牛顿常数, } G = 6.67259 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \]

\[x(t): \text{随时间变化的时间序列} \]

\[\hat{x}(f): x(t) \text{的傅里叶变换 (Fourier transform), 定义为 } \hat{x}(f) = \int x(t) e^{-i2\pi ft} dt \]

\[\Theta: \text{描述信号族的参数} \]

\[P(0): \text{数据中只有噪声没有引力波信号的概率} \]

\[P(h): \text{数据中有带有任何参数的引力波信号的概率} \]

\[P(x): \text{观测到时间序列} x(t) \text{的概率} \]

\[P(\Theta): \text{在引力波信号族中参数为} \Theta \text{的引力波信号的概率} \]

\[P(x|0): \text{在数据中只有噪声没有引力波信号的条件下，观测到时间序列} x(t) \text{的概率} \]

\[P(x|h): \text{在数据中任意参数的引力波信号时，观测到时间序列} x(t) \text{的条件概率} \]
第一章 绪论

\(P(x|h(\Theta)) \): 数据中有引力波信号且参数为\(\Theta \)时，观测到时间序列\(x(t) \)的概率

\(P(h|x) \): 在观测到时间序列\(x(t) \)的情况下，数据中含有引力波信号的概率

\(a:b \): 张量\(a \)和张量\(b \)缩并，\(a : b = a^i b^j \)

\(\hat{x} \): 在太阳系坐标下\(x \)轴方向的单位向量，\(\hat{x} = (1, 0, 0) \)

\(\hat{y} \): 在太阳系坐标下\(y \)轴方向的单位向量，\(\hat{y} = (0, 1, 0) \)

\(\hat{z} \): 在太阳系坐标下\(z \)轴方向的单位向量，\(\hat{z} = (0, 0, 1) \)

\(c \): 光速，\(c = 3 \times 10^8 m/s \)

\(f \): 引力波的频率

\(S_n(f) \): 单边功率谱密度

\(\hat{x}^*(f) \): \(x(t) \)的傅里叶变换的共轭

\((x|y) = 4 Re \int_0^{+\infty} \frac{\hat{x}(f) \hat{y}^*(f)}{S_n(f)} df \)

\(\langle \cdots \rangle \): 期望

\(AU \): 天文单位，即太阳和地球之间的平均距离，\(1AU = 149597871 km \)

\(Kpc \): 千秒差距，1秒差距大约为3.261光年，大约为3260光年

\(Mpc \): 百万秒差距

\(\Lambda \): 整个信号族的似然比

\((\theta, \phi) \): 引力波源在天球中的位置

\(n(t) \): 白噪声
空间引力波探测中关于信号处理分析的研究
第二章 引力波

§2.1 引力波源

我们知道空间激光干涉仪和地面激光干涉仪的工作频段不同，同时他们探测的目标波源也有所不同(如图2.1)，只有他们共同发展才能测得更多频段的引力波。一般我们会认为较强引力波的发射会伴随着剧烈变化的天体物理过程，引力波源的种类有很多并且数量也很多。空间引力波探测任务的主要波源辐射的引力波的频段在1mHz 到1Hz，波源特征质量和尺度普遍都很大，而且波源的数量众多，仅仅银河系内的双白矮星作为波源就有百万量级的数量。地面引力波探测任务可以探测到波源辐射的高频引力波，地面探测器探测的目标波源数量相对于空间引力波探测的波源数量来讲就少很多。接下来我们要详细介绍以下几种引力波源。

![The Gravitational Wave Spectrum](image)

图 2.1 引力波的频谱和波源

§2.1.1 恒星质量黑洞并合

黑洞是根据广义相对论所推论、宇宙空间中的一种质量非常大的天体和星体。很多
的黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽之后，发生引力坍缩而形成的。黑洞的质量巨大，它产生的引力场的强度十分大，以致于大量可测物质和辐射都没有办法逃逸，就连传播速度极快的光子也没有办法逃逸。因为和热力学中完全不反射光线的黑体相类似，所以称之为黑洞。计算证明，黑洞会出现自身质量的增长，主要是通过黑洞的吸积。黑洞自身的质量大小、自传角动量、自转轴和吸积盘之间的夹角和气体供给等决定了黑洞在吸积过程中质量增长的快慢。

当两个黑洞在绕旋过程中足够靠近的时候，便会并合成一个黑洞。并合后的新的黑洞会因为后坐力脱离原本的位置，如果速度够快，也有可能脱离星系母体。恒星质量黑洞的质量是太阳的几倍到几十倍，恒星质量黑洞和超大质量黑洞在质量上存在着很大的差异。恒星质量黑洞并合释放的引力波频段在地面探测器的探测频段，属于高频引力波。目前，恒星质量双黑洞并合辐射的引力波已经被LIGO 探测到，并且LIGO 前三次探测到的引力波都是恒星质量的双黑洞并合。

§2.1.2 双中子星并合

恒星演化到末期，由于引力塌缩发生超新星爆炸之后，有可能形成中子星。中子星是在其寿命终结时塌缩形成的一种星体，它的质量小于能够形成黑洞的恒星的质量。中子星是目前已知的除了黑洞以外密度最大的星体，比地球上任何物质的密度都大很多。一颗中子星的质量在1.35个太阳质量到2.1个太阳质量之间，密度为 $8 \times 10^{13} g/cm^3$ 至 $2 \times 10^{15} g/cm^3$，半径约为太阳半径的1/70000到1/30000。

双中子星并合产生引力波的机制与恒星质量双黑洞并合产生引力波的机制相同，两个中子星碰撞然后并合成一个黑洞，一个中子星和一个黑洞并合都可以辐射出引力波信号，并且辐射出的引力波信号属于高频引力波，在地面探测器可以探测的频段。如果有双中子星并合发生并产生足够强度的引力波信号，则用地面探测器LIGO 可以探测到。2017年在多次探测到来自双黑洞并合的引力波信号后，终于第一次探测到来自中子星并合的引力波信号，这意味着人们又确定了一种地面探测的目标波源，这将有利于更好地还原中子星的属性。

§2.1.3 中等质量比的绕旋系统

中等质量比的绕旋系统（Intermediate Mass Ratio Inspiral , IMRI）是恒星质量黑洞、中子星等致密小天体被中等质量黑洞俘获形成质量比为几十到几千的绕旋系统。中等质量黑洞的质量大约在100到100000个太阳质量之间，截止目前，中等质量黑洞的观测数据
仍然比较少，只是确认了两个候选者。

中等质量黑洞是由星团中心的恒星质量黑洞快速碰撞并合形成的，或者是恒星并合形成大质量恒星再经过演化死亡形成。有中等质量黑洞存在的星团在向星系核中心靠近的过程中，会被潮汐力逐渐撕裂，星系中心的大质量黑洞和剩下的中等质量黑洞将形成中等质量黑洞—--大质量黑洞的IMRI系统。恒星质量黑洞与中等质量黑洞进行绕转的系统，它产生的引力波信号相对较弱。但是恒星质量黑洞与中等质量黑洞进行绕转的IMRI系统也是很重要的，它可以帮助我们理解极强引力场下的动力学行为。

中等质量比的绕旋系统释放的引力波在可以被LISA探测到的频段，研究IMRI系统将为星团中中等质量黑洞是否存在提供确凿证据，同时也由于信号强度相对较弱，也对探测器的更高精度提出了挑战。同时，由于IMRI系统比较复杂，这对以后的数据处理来说是一个很大的难题。

§2.1.4 极端质量比绕旋系统

星系中心致密天体（白矮星、中子星或者恒星质量黑洞）在星系中心（超）大质量黑洞最内稳定圆轨道（Innermost Stable Circular Orbit,ISCO）附近不断绕转，称为极大质量比绕旋系统，也就是EMRI系统（Extreme Mass Ratio Inspiral）。EMRI系统中的质量比为1/10^6 或者更小，EMRI释放的引力波是中低频的引力波信号，是空间引力波探测的重要波源，从图2.2中可以看出EMRI释放的引力波的频段。

图 2.2 EMRI释放的引力波的频段
空间引力波探测中关于信号处理分析的研究

当一个黑洞在星系中心（超）大质量黑洞最内稳定圆轨道附近绕转时，就是一个极端质量比双黑洞系统，目前人们了解的星系中心包括 10^6 个太阳质量到 10^9 个太阳质量的超大质量黑洞。

EMRI释放引力波虽然事件发生率不确定，对LISA来讲可能每年一个或者每年几百个都有可能，但是一旦LISA任务启动，EMRI就一直存在，需要长时间的观测来积累信噪比。EMRI释放的引力波携带了丰富的天体物理数据，如果将来能够检测该引力波信号，便可以对中心物体的质量和角动量做一个精确的测量，也可以精确反演质量四极矩以及更高阶的多极矩信息，这为超大质量黑洞的形成和演化的模型的研究提供了关键信息。并且引力波信号可以用来对强引力场中广义相对论的预测进行前所未有的测试，为研究星系中心动力学提供了帮助。

EMRI辐射的引力波可以很容易地与空间引力波探测器的仪器噪声区分开，但是大多数信号将被埋藏在仪器噪声中。EMRI在进行数据处理的过程中相比于单频双星系统也较为复杂，我们需要准确估计17个参数来描述波形和其动力学。对EMRI辐射的引力波进行数据处理来反演其动力学，需要我们提高对大参数空间、复杂参数空间的数据处理手段，并且也对人们对Kerr时空的理解、黑洞附近时空的多尺度结构等提出了更高的要求。

§2.1.5 致密双星系统

目前，经过光学和X射线观测，天文学家已经可以确定银河系中致密双星系统，其中也包含一些正在发生质量变化的系统。这些致密的双星系统主要有双白矮星系统和双中子星系统等，科学家可以对它们的天体物理信息和位置测量的比较准确，预言它们可以产生引力波，并且引力波频段的范围主要在低频，所以它们都是空间引力波探测任务的主要波源。

白矮星是一种密度极高的小恒星，它的密度约是地球的20 万倍，仅次于中子星和黑洞的密度。一个太阳质量的白矮星的体积跟地球一般大小。白矮星的光度很低，形成时温度很高。但是它没有能量来源，它微弱的光度则来自过去储存的热能，所以随着释放能量而逐渐降低温度。白矮星虽然体积比较小，但是数量众多，双白矮星系统是银河系内大量存在的双星系统，这激发了我们对白矮星辐射引力波研究的兴趣。

我们在探测白矮星为波源的引力波时，只需要保证空间引力波探测器LISA在设计灵敏度下正常工作即可。经过人们对空间探测项目波源的研究以及数据处理技术的发
展，已经可以分离出几万个引力波信号，并且还原出具体的物理参数来确定波源和波形。但是仍然有一部分波源释放的引力波由于技术问题不能被提取出来，称为不可分辨的信号，被称为是前景噪声。银河系内的双白矮星是LISA探测的重要引力波源，以千万量级的双白矮星系统构成了前景噪声。

LISA观测双白矮星系统释放的引力波时，只要空间探器可以正常工作，就可以获得有关引力波信号的信息，这也是双白矮星系统这类波源适于观测的重要原因。并且我们可以利用一些理论基础去模拟和计算双白矮星双星系统释放的引力波的波形，也为人人们校准和评价探器和数据处理技术提供了标准。

除了双白矮星系统，其他的致密双星系统还有两个中子星相互绕旋形成的双中子星系统、两个黑洞绕旋形成的双黑洞系统、一个中子星和一个黑洞相互绕旋形成的系统。他们在绕旋过程中也会产生微弱的引力波，这个引力波强度比并合时的强度要微弱很多，所以需要LISA进行这些双星系统的引力波探测。

双中子星是宇宙中常见的天体系统，我们也可以对它的引力辐射进行准确的计算。双中子星的周期一般都比较长，产生的引力波的频率在毫赫兹左右。这种低频信号不适合用地面探器LIGO探测，所以双中子星释放的引力波信号是空间探测任务的一部分。

双黑洞是由两颗绕着共同的中心旋转的黑洞组成的系统，随着公转的黑洞向外辐射出引力波，它们的轨道逐渐衰变，公转周期也随之变短，这个阶段被称作为双黑洞旋近。在这个阶段也会释放出引力波，但是引力波信号比双黑洞并合时微弱，不能到达地面探测器的频段，所以对于此类双星系统也由空间探测器探测。

对于空间中探测致密双星系统辐射的引力波，具有很重要的研究意义，可以为人们探索宇宙的奥秘打开窗口。

§2.1.6 随机背景引力波

因为引力相互作用与物质的耦合十分微弱，在引力波的传播过程中几乎没有阻碍，暴涨阶段产生的引力波穿透宇宙演化的过程，成为背景引力波[29]。一般情况下引力波用振幅来描述其强度，而随机背景引力波一般用波场的能量密度来描述，这种随机背景引力波可以来自任何天体，也可以来自大爆炸。所以随机背景引力波源数量巨大，在全天区分布比较分散，很难对单个的引力辐射性质进行区分和估计。随机背景引力波既有连续型又有脉冲型，它的引力波信号强度比其他波源的引力波信号要弱很多。

LISA探测的其中一种波源就是随机背景引力波，对宇宙大爆炸诞生后约10^{-20}s -
10^{-10}s产生的引力波进行测量，可以了解宇宙极早期的一些信息，这些信息是其他物理手段不能提供的，为人类探索宇宙的诞生过程、暴胀理论提供了一条途径[23]。

§2.2 国外引力波探测

§2.2.1 引力波探测的成果

广义相对论预言了引力波的存在，引力波的探测就成为十分重要的任务。但是引力波的直接探测在实验方面具有很高的难度，微弱的引力波对探测仪器的灵敏度提出了很高的要求。

世界上第一个引力波探测器是Weber于1966年在Maryland大学建造的：一个悬挂着的长153cm，直径66cm的铝棒及其附属装置。经过他多年的坚持不懈，他宣布了在两地探测器上同时测得引力波脉冲，但是其他引力波探测者并未对此认证。Tyson的探测器比Weber的探测器具有更高的灵敏度，但是却丝毫没有收到类似的脉冲。

1987年国外一个小组宣称接收到来自一颗超新星（1987年2月地球上的天文学家观测到的离银河系最近的河外星系爆炸中发现的一颗超新星）的引力辐射，但是也并没有取得其他引力波探测器的认证。

但是对脉冲星的观测却取得了意想不到的成果，1974年Hulse和Taylor发现脉冲双星PSR1913+16（脉冲双星是指一个子星为脉冲星的双星，PSR是脉冲星的识别符，1913和+16分别代表它的赤经和赤纬），他们对轨道周期变化率的观测结果，与线性引力论的四极辐射公式计算的理论值刚好吻合，这是第一个关于引力波携带能量的定量观测证据，间接验证了引力波的预言。

尽管LIGO被认为是一个天文台，但LIGO在美国有四个不同的设施：两个引力波探测器（干涉仪）和两个大学研究中心。干涉仪位于华盛顿（LIGO Hanford）和路易斯安那州（LIGO Livingston）相当偏远的地区，相距3002公里（1865英里）。两个主要的研究中心位于加利福尼亚州帕萨迪纳市的加利福尼亚理工学院（Caltech）和马萨诸塞州剑桥市的麻省理工学院（MIT）[40]。

高级的LIGO（Advanced LIGO）是第二代引力波探测器，由汉福德和利文斯顿的两个相同的干涉仪组成，并使用精确的激光干涉仪来检测引力波。从2015年9月开始运营，高级LIGO进行了两次观察。第二次 "O2" 观测从2016年11月30日开始，到2017年8月25日结束。
第二章 引力波

高级的Virgo（Advanced Virgo）是由Virgo合作建造和运营的第二代仪器，用于探测引力波。随着2011年10月最初Virgo探测器的观测结果，高级Virgo探测器的整合开始了。新设施于2017年2月投入使用，并且正在进行调试。4月份，探测器在其工作点的控制首次实现。

截止到目前，LIGO已经宣布探测到五次引力波事件[40]：

（1）GW150914

美国的激光干涉仪引力波天文台(LIGO)于2016年2月11日宣布首次探测到了引力波，该引力波信号在2015年9月14日观测到。探测到的引力波的波源是距离地球410Mpc的双黑洞碰撞和并合，记为GW150914。

![GW150914引力波事件](image)

图2.3 GW150914引力波事件

图中第一行分别显示H1和L1两个探测器的反应，GW150914首先到达H1，在$6.9^{+0.5}_{-0.4}\text{ms}$之后到达L1，为了直观地进行比较，将L1的数据按照时间差进行了平移，并且考虑到探测器的相对方位，进行了反转。第二行显示的是在35-350 Hz频段内投射到每个探测器上的引力波响应。实线显示的是与GW150914参数一致的峰值相对论的波形，证实99.9%一致；阴影区域显示两个独立波形重建的90%可信区域。一个（深灰色）使用黑洞模板波形
空间引力波探测中关于信号处理分析的研究

对信号进行建模，另一种（浅灰色）不使用天体物理模型，而是将信号记为为正弦高斯小波的线性组合，这些都94%的重叠。第三行显示的是残差，滤波后的探测器时间序列减去滤波后的数值相对论波形。第四行显示的是数据的时频表示，显示信号的频率随时间的增加[40]。

根据广义相对论，互相绕转的双黑洞通过引力波的辐射而失去能量，使它们在绕转的过程中逐渐接近，最后在几分钟内加速。最终，两个黑洞以将近一半光速的速度碰撞到对方，形成一个更大的黑洞，将一部分黑洞的质量转换成能量。根据爱因斯坦的公式\(E = mc^2 \)，这种能量是作为引力波最后的强烈爆发而发出的。这就是LIGO观测到的引力波。两个黑洞的质量分别是29个太阳质量和36个太阳质量，并合后形成62个太阳质量的黑洞，剩下3个太阳质量的黑洞以引力波的形式辐射出来。这证实了爱因斯坦广义相对论的一个关键预言，并提供了黑洞合并的第一个直接证据，标志着引力波天文学领域的开始。

（2）GW151226

这次的观测十分重要，这些黑洞比那些在第一次检测中观察到的黑洞小得多。因为黑洞相比第一次观测较轻的质量，在探测器的灵敏频段多花了大约一秒的时间。在LIGO第一次观测运行的四个月中，由于检测到两个强引力波事件，我们可以开始预测将来我们可能会观测到引力波的频率。这两次发现都是由高级LIGO增强的能力所促成的，这一重大升级提高了仪器与第一代LIGO探测器的灵敏度。LIGO为我们带来了一种新的方式来观察我们宇宙中最黑暗但最充满活力的事件，并且我们可以通过LIGO观测到的信号知道很多物理信息。
第二章 引力波

(3)GW170104

在2017年6月1日，LOGO宣布了第三次探测到引力波，该信号由LIGO Hanford 和LIGO Livingston 观测站于2017年1月4日被检测到。探测到的引力波依然来来自于黑洞的碰撞和并合，记为GW170104。引力波波源在距离地球880Mpc的位置，黑洞质量分别为31.2个太阳质量和19.4个太阳质量，并合后生成49个太阳质量的黑洞，发现的GW170104和广义相对论一致。这填补了之前由LIGO 检测到的两个并合黑洞的质量之间的差距，位
于两次探测到的并合后的黑洞质量中间，第一次检测到的并合后的黑洞质量为62个太阳
质量，第二次检测到的并合后的黑洞质量为20.8个太阳质量。

![图 2.4 并合前后黑洞相对大小示意图](image)

在以上探测的这三种情况下，LIGO的每个探测器（H1和L1）都能够从双黑洞并合中探测出引力波，产生的能量比任何时候宇宙中所有恒星和星系的光辐射都要强。这次发现的波源是前三次探测中最远的，黑洞位于距离我们约30亿光年远的地方（第一次和第二次
检测中的黑洞分别位于距离13亿和14亿光年远的地方）。最新的观察也提供了有关
黑洞旋转方向的线索，成对的黑洞相互绕旋，它们也会在自己的轴上旋转。有时黑洞会以相同的整体轨道方向旋转，有时它们会以与轨道运动相反的方向旋转。而且，黑洞也可以从轨道平面倾斜。本质上，黑洞可以在任何方向上旋转。这次观测新的LIGO数据不
空间引力波探测中关于信号处理分析的研究

能确定最近观察到的黑洞是否倾斜，但意味着至少有一个黑洞可能与整个轨道运动相比是不对齐的。需要LIGO进行更多次观察来说明与有关双黑洞旋转的明确信息，但这些早期数据提供了有关线索。

(4) GW170814

第四次引力波事件由LIGO和VIRGO科学协同组织联合发布，这意味着Virgo和LIGO共同协作的网络观察的开始。该事件由LIGO Hanford (H1), LIGO Livingston (L1) 和Virgo (V1) 在2017年8月14日同时发现，这是首次由LIGO和VIRGO同时探测到的引力波事件，也是VIRGO首次探测到引力波，可以更好地定位引力波在天区发生的位置。黑洞位于距离地球约18亿光年，为1.6倍太阳质量的黑洞和25倍太阳质量的黑洞并合53倍太阳质量的黑洞，这次事件称为GW170814。

Virgo探测器于2017年8月1日10:00加入O2运行。8月14日的实时检测是由三个LIGO和Virgo仪器的数据触发的。Virgo目前比LIGO灵敏度低，但基于三个探测器提供的所有信息的两个独立搜索算法也证明了Virgo数据中的信号。所以GW170814是Advanced Virgo在开始运行后的两周后探测到的引力波信号，这与过去六年里Advanced Virgo升级的工作是一个巨大的回馈。世界各地的LIGO和VIRGO的合作伙伴电磁设施并未发现GW170814的对应物，这与之前LIGO三次黑洞合并观察结果相似。黑洞会产生引力波，但不会产生光。Virgo带来了一种强大的新功能，可以检测并更好地定位引力波源，这无疑将带来未来令人兴奋和未曾预料到的结果。

(5) GW170817

2017年8月17日，LIGO Hanford (H1), LIGO Livingston (L1) and Virgo (V1) 又一次探测到引力波事件，该引力波信号持续100秒左右，记为GW170817。此次引力波事件由两个中子星并合产生，是一个新型事件。波源在距离地球1.3亿光年处，质量分别为1.15和1.6个太阳质量，同时，还发现了此次引力波事件的电磁对应体，这是众多天文学家和探测设备共同努力的结果，这在天文学发展史上有着重大意义[40]。

第五次观测到的引力波是由双中子星并合产生，与之前观测到的由双黑洞产生的引力波事件不同，双中子星作为波源与双黑洞最大的区别在于，双中子星并合会产生电磁波辐射，而黑洞并合时通常认为不会产生，这一点也得到了观测上的验证。在这次双中子星产生引力波的事件中，三个探测器共同合作，最终将波源定位在一个28平方度的范围之内。图中显示了两个轨道中子星的并合，左图显示了碰撞附近的时空是如何变形的，右图包含了中子星事件的可视化[40]。
图 2.5 双中子星并合

LIGO于2015年开始检测引力波信号的天空定位，包括GW150914、LVT151012（疑似引力波事件）、GW151226、GW170104。最近还有LIGO-Virgo网络探测到的引力波，包括GW170814和GW170817。在Virgo于2017年8月上线后，科学家能够更好地定位引力波信号。背景是银河系的光学图像，因为GW150914、LVT151012和GW170104的定位环绕天球，因此天空图显示为半透明圆顶（如图2.6所示）。仅仅是地面探测引力波已经不能满足人们探索宇宙的需求，所以在地面探测器不断发展的同时，空间引力波探测计划也在不断发展。国际上比较领先的空间引力波探测计划LISA在美国宇航局和欧空局的合作下制定的，目前也进一步的发展中。

§2.2.2 引力波探测器

现阶段，大型探测仪是敏感的引力波探测器，在全世界已经有很多地面探测器。美国的LIGO是目前最大的地面引力波探测仪。LIGO有两个干涉仪：一个位于美国西北海岸（Hanford），如图2.7所示；另一个位于美国南海岸利文斯顿（Livingston），如图2.8所示。每个干涉仪都有两个成L型的臂，臂长都为4千米，每个臂都由直径1.2米的真空钢管组成。

除了LIGO之外，还有其他的大型地面探测器，比如：意大利和法国的VIRGO(臂长3000米)、德国的GEO600(臂长600米)和日本的TAMA300(臂长300米)等。随着探测技
术的不断提高，LIGO和VIRGO 都做了升级，第二代地面激光干涉实验装置，提高了它们的灵敏度，升级版分别为先进LIGO(Advanced LIGO) 和先进VIRGO(Advanced VIRGO)。同时，印度也正在计划建引力波探测器，称为LIGO-India，是美国的LIGO和印度合作的项目：日本也在建造地下神岗引力波望远镜，臂长为3km，记为KAGRA。图2.9显示了目前全球地面引力波探测的位置分布，目前在运行的地面探测器有LIGO和VIRGO。VIRGO
在2017年8月1日开始与两台LIGO探测器一起工作，开始运行探测引力波。随着VIRGO的运行，我们又在引力波天文领域迈出了一步，虽然VIRGO并不是特别灵敏，但是它可以确认潜在的检测，并帮助更准确地定位天空中的引力波源。

虽然地面激光引力波干涉仪的测量精度在不断提高，但是地面激光引力波干涉仪的探测频段在十到千赫兹之间（比如：LIGO的工作频率在10Hz-1000Hz），地面探测器在低频方面的阻力主要来自于地面震动的噪声。为了探测较低的频段，探测更丰富的波源发出的引力波，就需要避免地表噪声的影响，所以探测低频引力波需要把干涉仪放入太空中。

20世纪90年代开展了空间激光引力波探测项目LISA，它是美国宇航局（NASA）和欧空局（ESA）合作的项目。后期美国NASA退出了合作项目，但是欧空局并没有放弃该项目，只是因为经费缩减提出了eLISA（Evolved-LISA）项目。在2017年初，美国宇航局重新回归LISA项目，与ESA重新开始合作，形成以ESA为主导的新的LISA任务。

LISA是目前空间引力波探测器项目中比较成熟的计划，是一项大规模的空间任务，LISA的任务设计要求三个相同的航天器围绕太阳为等边三角形编队飞行，航天器组成的平面与黄道面夹角为60度，三个航天器的质心在地球轨道上并且在地球后面20度的位置。LISA围绕太阳做逆时针运动，周期是一年（如图2.10所示）。LISA的工作频段在0.1mHz-0.1Hz之间，执行任务的时间为1-5年。有了空间探测器LISA，我们能通过
图 2.9 现阶段全球地面探测器的分布

引力波直接观测到宇宙，了解宇宙的结构和星系的形成、恒星演化、早期宇宙以及时空本身的结构和性质。

图 2.10 LISA与地球、太阳的位置关系

为了验证空间探测引力波的想法，欧空局（ESA）制定了LISA探路者（LISA Pathfinder，LPF）计划。LISA 探路者于2015 年12 月3 日发射，并于2016 年3月1 日开始空间实
第二章 引力波

验。LISA 探路者以前所未有的精度控制和测量其相对运动，这通过惯性传感器、激光干涉测距系统、无拖曳航天技术和微牛量级的推进器的创新技术来实现，所有的这些技术都对LISA 至关重要。并且测试质量及其处的环境是太阳系中相对安静的地方，经过16个月的工作，LISA 探路者已按计划在2017 年7 月18 日晚上关闭，结束其成功的使命，超越了预期期望。

初步结果表明，LISA探路者的工作精度比所要求的要高五倍，顺利通过了在太空中探测引力波概念。LISA探路者为LISA 任务铺平了道路，成功地展示了空间中大型引力波观测站的关键技术，开辟了一个大型空间观测站的大门。

§2.3 引力波数据处理分析

随着国内外引力波探测器精度的不断提高和技术的不断发展，人们也越来越需要对探测结果有一个正确的分析和解释。实际上，引力波是由引力波源大规模的剧烈运动产生的，引力波的相位变化通常包含了人们很感兴趣的一些信息，包括波源的物理参数及其演化的一些信息。引力波数据处理就是为了通过引力波携带的信息分析出波源的一些物理性质，为人们提供研究依据。

引力波数据处理的本质就是要在大量的噪声中提取引力波信号，当激光干涉引力波探测器探测到引力波信号之后，我们就需要进行处理然后进行相关的参数估计。对于地面引力波探测器（LIGO），引力波信号十分微弱使得信号之间不会互相干扰，所以不管有多少个引力波信号，检测每个信号就是在仪器噪声中找到它。所以对于地面引力波探测器的数据处理需要对许多不同信号族进行并行搜索。LISA在整个天空中几乎具有各向同性的灵敏度。LISA围绕太阳运动，通过相位和振幅的调制信息分离出来自不同的方向的信号。LISA的灵敏度很高，仪器噪声很低，也会因为波源太多而造成信号的混淆，构成前景噪声，所以引力波信号必须在其他信号的背景下被识别。这意味着所有信号族必须以统一的方式进行搜索，因为每一个信号族的检测可能会影响其他信号族的信号搜索。

所以对于LISA的数据处理可以对地面探测器数据处理的方法加以改进使用，同时还需要使用新的方法进行研究。

为了支持LISA空间引力波探测和数据处理的发展，LISA 国际科学组织（LISA International science Team, LIST）在2005 年LISA国际会议上提出并决定开始组织模拟LISA数据挑战（Mock LISA Data Challenge, MLDC）。截止到目前，模拟LISA数据挑战已经进行了数轮，并且随着轮数的增加难度越来越大，但是这个挑战吸引了很多人做引力波研究。

23
空间引力波探测中关于信号处理分析的研究

的人员参与进来，促进了LISA 数据分析工具和能力的发展，并且展示了引力波领域已经实现了的技术准备，更重要的是可以从LISA 输出数据中打开天文学观测的新窗口。

模拟LISA数据挑战（MLDC）工作组自2006年开始一直在制定最有意义的挑战问题；他们以最科学最有效的方法和循序渐进的方式释放模拟LISA数据挑战的数据，并确定分析评估标准，制定LISA 任务的标准模型和LISA探测的引力波源，提供LISA对源的模拟响应、引力波波形生成以及模拟数据挑战的文件格式等的计算工具，并且为广大的参与者提供必要的技术支持，包括主持论坛和软件等。

模拟LISA数据挑战的组织者释放模拟数据，全世界对此感兴趣的人都可以参加。模拟数据数据是将一个或者多个入射的引力波信号经过仪器的响应之后加到可以预测的仪器噪声和背景源噪声上，随着轮数的增加越来越接近实际情况。模拟LISA数据挑战的组织者释放的数据包括盲数据（Blind Data）和训练数据（Training Data）。训练数据的信号的真实参数在释放数据时是公布的，参加者可以先用训练数据测试自己的估计方法和算法，然后再对盲数据进行分析，在规定时间内提交结果。

第一轮MLDC于2006年6月开始，在2016年12月结束。该轮MLDC共有三组数据，分别为大质量黑洞并合、EMRI和双白矮星，其中因为EMRI需要分析17 个参数，挑战难度较高、进展比较慢之后并入了第二轮MLDC挑战。这些引力波波形由四级矩公式和两阶后牛顿公式给出。大质量黑洞的数据包含两组模拟数据，每组数据中都只有一对黑洞的信号，信噪比分别为几百和几十。双白矮星数据又分为以下几个部分，包括单个频率不变的双白矮星源的数据、包含20个已知频率和角位置等信息的“已证实的”双白矮星引力波的数据，包含数十个频率上集中在很小范围内的带有比较严重混淆度的白矮星源，有些数据对难度逐渐增加。本轮中大质量黑洞和双白矮星的模拟数据中的噪声都只包含了模拟的LISA的仪器噪声，并认为是高斯稳定的，即激光频率噪声没有加入，释放的数据已经是TDI数据。数据采用的时间是15秒，时间长度是一年。

MLDC1的参与者共有10个组，其中有8个组同时用到了匹配滤波，有2个组完全没有使用匹配滤波。这些参与者还运用了不同的搜索方法，比如：遗传算法、Monte Carlo Markov-Chain 方法，在考虑参数空间结构时还使用了F - Statistic。MLDC1 已经成功吸引了10个组参加到LISA的数据处理分析研究中，并初步提供了一些针对特定情形可以使用的方法。MLDC 的组织者通过首轮的挑战成功，开始发展对分析结果的评价标准。在还没有探测到真实数据之前，进行模拟数据挑战也是十分重要的。第一轮MLDC 的成功对发展引力波数据的处理和分析有着重要意义，迈出了空间探测引力波数据处理的第一步。
第二章 引力波

第二轮MLDC开始于2007年1月，难度远高于MLDC1。释放的模拟数据主要包括三部分。第一部分是MLDC1没有完成的EMRI，这部分包括两组数据，采样时间为15秒，时间长度为两年，采用热点近似的Peters-Mathews波形[55]，距离和偏心率的演化等都是由后牛顿公式给出的。第二部数据是来自银河系内双白矮星的引力波背景，采样时间是15秒，时间长度为两年。这些数据有3000万个模拟的单频双白矮星引力波信号、已知频率和角位置的25个“已证实”的双白矮星源和仪器噪声。第三部分数据是截止到当时所有挑战的数据的混合，同样是15秒的采样时间和两年的时间长度。数据中包括：3000万个单频的双白矮星信号；25个已知频率和角位置的“已证实”的双白矮星源的信号；4对到6对大质量黑洞并合的引力波信号，信噪比在10-2000不等；5个信噪比在30-100之间的 EMRI信号。经过半年的时间，有13个组给出了以上数据分析的结果。在这些分析结果中，参与者分析出了20000个白矮星信号，比较精确地估计了大质量黑洞并转并合的参数，检测到了EMRI信号，但还是没有做到对EMRI的精确估计。从MLDC1到MLDC2，虽然挑战难度增加，但是吸引了更多的参与者加入到引力波数据分析的研究中，本轮MLDC较上轮MLDC参与者增加了3组。

在MLDC2之后，2007年8月开始了难度与前两轮相当的MLDC1B，参与者提交结果的截止日期是2008年12月。本轮挑战共有10个组提交了结果，其中也有新的参与者加入其中，参与者在这轮挑战中用到了一些新的方法。MLDC1B中的波源主要有三类：单频银河系内双白矮星、大质量双黑洞并转和EMRI。除了EMRI的数据长度是两年外，其余的都是一年，采样时间都是15秒。本次参与者成功恢复了白矮星和大质量双黑洞产生的引力波信号，还贡献了EMRI信号首次有说服力的检测和参数估计方法。在本轮挑战中，我国的数据团队也是其中一个参与者，团队名称为973MCMNJU，并取得了不错的成绩。

MLDC3开始于2008年初，数据由5个部分组成，难度相比之前的挑战增加很多，因此原定一年的分析时间又在2008年11月被延长到2009年四月底。其中有3个部分的数据长度是两年，采样时间是15秒。第一部分是频率演化的银河系内的白矮星双星系统，包含6000万个信号和20个“已证实的”波源，这些引力波源释放的信号的频率是变化的，可能在逐渐增加也可能在逐渐减小。第二部分是在第一部分的基础上加上了4对到6对大质量黑洞的信号，并且考虑了黑洞的自旋及自旋-自旋、自旋-轨道角动量耦合带来的轨道进动。第三部分是5个EMRI信号。第四部分和第五部分分别是关于持续时间非常短的“burst”信号和随机背景引力波，这两部分的内容是全新的，数据长度为一个月，采样时间是1秒[38,56]。

在MLDC3之后又进行了一轮挑战，即MLDC1C，本轮挑战于2010年5月终止。这一
轮挑战是对第一轮挑战的补充，为学生提供一个新的机会去了解MLDC 数据分析并开发适用的代码，让有经验的团队有机会提高算法。本轮挑战波源的分布与第一轮挑战分布相似，但是生成挑战数据集的代码用的是Round2的代码生成的。波源主要包括：银河系内双白矮星系统、大质量黑洞、EMRI三大部分。

MLDC4的挑战是截止到目前的最后一轮挑战，它的数据集包括了MLDC3数据集中所有的来源，虽然第三轮MLDC的重点是增加引力波源的复杂性和多样性，但这次迭代致力于检测和分析LISA数据中叠加的不同类型来源的全球适应性问题。波形模型与第3轮中的波形模型相同，除了宇宙弦爆发的频谱被切断为低于10^{-5}Hz;随机背景光谱被修改;并且大质量黑洞双星信号作为双星并合被切断。第4轮挑战的截止日期延长至2011年6 月17 日，这一挑战的全球适应特征鼓励开展搜索不同来源的团体之间的合作努力。

我国的数据处理也在不断地发展与进步，我们的数据处理团队吸引了越来越多的人参与其中。我国的数据团队曾参与了MLDC 1B的挑战，也是第一次做空间引力波数据处理的工作，并且很好地估计了参数。这也成功促进了我国空间引力波数据处理的发展。新一轮的MLDC将于今年开始，本轮释放的数据将更加复杂，我国的数据团队正在积极准备新一轮的MLDC，希望他们能够取得好的成绩。这对我国的空间引力波数据处理技术的研究和发展具有推动作用，也对我国空间引力波探测计划的发展起到重要作用。
第三章 模拟双白矮星的探测数据

§3.1 我国空间引力波探测预研究

现阶段，我国致力于引力波研究的人员越来越多，也在为地面和空间引力波探测制定相应的计划。对于地面引力波探测，以中国科学院高能所为主导单位的科学家还提出了“阿里计划”，利用阿里地区大气透射率高、水汽含量少等独特的地理气象条件，对北半球可见天体进行首次原初引力波探测。

对于空间引力波探测计划，我国由中国科学院和院外科研单位共同研究，进行任务设计。在进行任务设计时，首先要选择探测的频段和航天器的个数与几何位形。LISA 采用的是近等边三角形，如果增加航天器数量或者采用别的位形，将为实验增加难度，并且科学方面也不会有太大的影响。所以中国科学院二期先导研究仍采用等边三角形编队飞行，并且按照绕日轨道运行。因为绕太阳运行具有更安静的深空环境。如果选择绕地运行的话，就需要考虑地球重力场的影响，增加了实验的困难。

干涉仪的有效臂长也是一个重要问题，它决定了干涉仪的工作频段。LISA 的臂长是 500 万公里，探测频段在 0.1mHz - 0.1Hz，它最灵敏的探测是在毫赫兹的频段。为了实现不同的探测任务，可以加长臂长或者缩短臂长。加长臂长可以使探测频段延至更低的频段，缩短臂长可以使工作频段增加到更高的频段。考虑波源，毫赫兹往低的波源主要有超大质量双黑洞并合，还有大量致密双星系统绕转构成的混淆噪声。如果波源在波源考虑，低 0.01Hz 附近，主要波源有中至大质量的双黑洞绕转和并合系统，这样波源的事件率更多，并且相对于超大质量双黑洞而言为研究宇宙结构和黑洞形成的历史提供了更直接的信息。所以，任务设计就选择了缩短臂长。

在任务设计初期，也曾提出过将臂长缩短至 50 万公里，比 LISA 的臂长减少一个量级，这样可以把探测频段提高一个量级。同时增加激光功率、望远镜口径，提高加速计的指标要求，相对于 LISA 的灵敏度提高一至两个量级。这个想法 Peter Bender 也曾提出过，即 ALIA（Advanced LISA）。但是由于对技术上的要求特别高，在合理的时间内对于欧洲也是很困难的。如果我们采取这种方案，在短期内对于推动我国空间引力波探测的发展会成为一种阻力。经过对技术可行性的研究，在原有科学目标的指导下，我们考虑采用 100 万公里或者 300 万公里的臂长。具体的技术要求和噪声分配如表 3.1 所示。
表 3.1 我国空间引力波探测任务设计

<table>
<thead>
<tr>
<th>距长 /km</th>
<th>激光功率 /W</th>
<th>望远镜口径 /m</th>
<th>测距精度 /pm \cdot Hz^{-1/2}</th>
<th>加速度噪声 /m \cdot s^{-2} \cdot Hz^{-1/2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5\times10^5</td>
<td>30</td>
<td>1.0</td>
<td>0.07</td>
<td>3\times10^{-16}</td>
</tr>
<tr>
<td>1\times10^6</td>
<td>2</td>
<td>0.5 - 0.75</td>
<td>1 - 2</td>
<td>3\times10^{-15}</td>
</tr>
<tr>
<td>3\times10^6</td>
<td>2</td>
<td>0.45 - 0.6</td>
<td>5 - 10</td>
<td>3\times10^{-15}</td>
</tr>
<tr>
<td>5\times10^6(LISA)</td>
<td>2</td>
<td>0.4</td>
<td>18</td>
<td>3\times10^{-15}</td>
</tr>
<tr>
<td>1\times10^6(eLISA)</td>
<td>2</td>
<td>0.2</td>
<td>11</td>
<td>3\times10^{-15}</td>
</tr>
</tbody>
</table>

图 3.1 我国空间引力波探测任务预研究的灵敏度

目前，300万公里的臂长是预研究阶段建议采用的臂长。这样的任务设计，在未来20-30年有望实现。如图3.1所示，图中给出了各空间引力波探测任务的灵敏度频段，相对于LISA灵敏度频段稍向右移。图中还给出了河内、河外双白矮星的背景水平，蓝色实线主要是银河系内白矮星的贡献；蓝色长、短虚线分别是Farmer和Phinney对河外致密双星集体水平上限和下限的估算结果。对于预研究给出的任务设计，基于现有的致密双星演化和数密度模型，河外致密双星来带的混淆噪声水平影响不大[29]。

预研究阶段的科学目标，除了与LISA重合的频段，对于中等质量黑洞并合的波源，尤其是总质量在几百至几万个太阳质量的黑洞双星并合系统有更高的探测能力。与LISA探测相同的频段有超大质量黑洞并合、极大质量比绕转系统和河内白矮星双星系统。
第三章 模拟双白矮星的探测数据

§3.2 模拟探测器的轨道

根据预研阶段的任务设计，考虑对探测器输出的数据进行模拟。因为探测器响应依赖于激光干涉仪的臂长和激光臂的方向，所以为了计算探测器的响应需要知道探测器的轨道。三个探测器（探测器 1, 2, 3）的轨道运动会对引力波产生幅度调制、频率调制和相位调制。幅度调制是因为探测器作为引力波天线会对天空中的不同位置都有不同的响应，频率调制是因为探测器相对于波源的相对运动产生的，相位调制是因为引力波两个极化的不同响应结合在一起形成的。

为了描述工作探测器的坐标，我们采用黄道坐标系，这个坐标系以太阳为中心，x轴指向春分点，y轴与地球的轨道角动量矢量平行，z 轴放置在黄道上完成右手坐标系。忽略其他太阳系的剪切，单个的航天器将遵循独立的开普勒轨道。三角形的形成是通过明智地选择初始条件而形成的。在偏心率二阶时，三个探测器的轨道可以表示为：

\[
x(t) = R\cos\alpha + \frac{1}{2} e R [\cos(2\alpha - \beta) - 3\cos\beta] + \frac{1}{8} e^2 R [3\cos(3\alpha - 2\beta) - 10\cos\alpha - 5\cos(\alpha - 2\beta)],
\]

\[
y(t) = R\cos\alpha + \frac{1}{2} e R [\sin(2\alpha - \beta) - 3\sin\beta] + \frac{1}{8} e^2 R [3\sin(3\alpha - 2\beta) - 10\sin\alpha + 5\sin(\alpha - 2\beta)],
\]

\[
z(t) = -\sqrt{3} e R \cos(\alpha - \beta) + \sqrt{3} e^2 R [\cos^2(\alpha - \beta) + 2\sin^2(\alpha - \beta)],
\]

其中 R=1AU 是指三个探测器质心到太阳的距离；α 是三个探测器质心的轨道相位，表示为

\[
\alpha = 2\pi f_m t + \kappa,
\]

其中 α 是探测器质心的轨道相位，表示为

\[
\beta = 2\pi n/3 + \lambda, (n = 0, 1, 2).
\]

\[f_m = 1/year\] 是频率。
\[e\] 是探测器的基本臂长 \(L = 3 \times 10^9 m\) 对应的轨道偏心率。
\[\kappa\] 和 \[\lambda\] 是两个初始相位。
\(\kappa \)给出了探测器质心的初始黄道经度。

\(\lambda \)给出了航天器的初始角度。

图3.2给出了角度\(\lambda \)的示意图:

\[
L_{12}(t) = L\left(1 + \frac{e}{32}[15\sin(\alpha - \lambda + \frac{\pi}{6}) - \cos(3(\alpha - \lambda))])\right),
\]

(3.6)

\[
L_{13}(t) = L\left(1 + \frac{e}{32}[15\sin(\alpha - \lambda - \frac{\pi}{6}) - \cos(3(\alpha - \lambda))])\right),
\]

(3.7)

\[
L_{23}(t) = L\left(1 - \frac{e}{32}[15\cos(\alpha - \lambda) + \cos(3(\alpha - \lambda))])\right).
\]

(3.8)
第三章 模拟双白矮星的探测数据

§3.3 模拟仪器噪声

我国预研阶段的引力波探测器是由三颗卫星组成的。航天器的噪声也会影响航天器的相位差，航天器的噪声主要包括三部分：相位噪声（Laser phase noise）、加速度噪声（Acceleration noise）和散粒噪声（Shot noise）。

相位噪声，也称为频率噪声，在这几种噪声中处于主导地位，所以我们必须要尽可能地消除掉相位噪声带来的误差。我们可以使用TDI（Time Delay Interferometry）技术来把相位噪声压制到可以接受的程度，即通过组合不同臂长的信号来实现。之后，我们只需要考虑加速度噪声和散粒噪声。

散粒噪声主要是因为光子数的涨落导致的，是光学测量过程中最常见的噪声之一。在消除激光相位噪声之后，散粒噪声在高频起主要作用。

航天器测试质量的加速度噪声来自于非引力的力的扰动，加速度噪声是红噪声，消除掉相位噪声的低频部分主要由加速度噪声决定，它的功率谱正比于频率的负二次方。

我们在模拟航天器输出数据的同时，既需要模拟引力波信号，也需要模拟航天器的噪声。因为本文的引力波源是白矮双星系统，考虑的引力波信号是单频的，源的能量就集中在很窄的频率附近，也就是集中在引力波的频率附近。在这个范围内，我们可以很好地认为航天器的噪声是白噪声。如果我们在以后的处理中遇到的是红噪声，我们也可以先把噪声白化，然后再乘上相应的功率谱来计算。在本文中，具体操作是随机产生与引力波信号的时间序列相同长度的白噪声n(t)，最后我们再加到引力波信号上产生航天器最后的输出数据。

§3.4 模拟引力波信号

§3.4.1 模拟一般的引力波信号

在源坐标下，沿着\(\hat{k}\)方向传播任意的引力波信号在横向无迹（Transverse Traceless，简记为TT）规范下可以写成两个独立偏振的和:

\[
h(\xi) = h_+(\xi)\varepsilon^+ + h_\times(\xi)\varepsilon^\times, \tag{3.9}\]

其中\(\vec{r}\)为探测器的位置向量，则

\[
\xi = t - \hat{k}\cdot\vec{r}/c. \tag{3.10}\]
ε^{+} 和 ε^{\times} 是TT规范下的极化张量基底。

因为航天器围绕太阳运行，所以在太阳坐标系下表示引力波信号，即所以引力波源在天球中的位置为(θ, ϕ), $\hat{\mu}$, $\hat{\nu}$ 表示沿着经线, 纬线方向的单位向量, 在天球坐标系下正交化向量为:

$$
\hat{\mu} = \cos \theta \cos \phi \hat{x} + \cos \theta \sin \phi \hat{y} - \sin \theta \hat{z},
$$

(3.11)

$$
\hat{\nu} = \sin \phi \hat{x} - \cos \phi \hat{y},
$$

(3.12)

$$
\hat{k} = -\sin \theta \cos \phi \hat{x} - \sin \theta \sin \phi \hat{y} - \cos \theta \hat{z}.
$$

(3.13)

定义张量ε^{\times} 和ε^{+} 由$\hat{\nu}$ 和$\hat{\mu}$ 两个正交向量表示为:

$$
\varepsilon^{+} = \hat{\mu} \otimes \hat{\nu} - \hat{\nu} \otimes \hat{\nu},
$$

(3.14)

$$
\varepsilon^{\times} = \hat{\mu} \otimes \hat{\nu} + \hat{\nu} \otimes \hat{\mu}.
$$

(3.15)

引力波的横向无迹化张量ε^{+} 和ε^{\times}可以表示为:

$$
\varepsilon^{+} = \cos(2\psi)e^{+} - \sin(2\psi)e^{\times},
$$

(3.16)

$$
\varepsilon^{\times} = \sin(2\psi)e^{+} + \cos(2\psi)e^{\times}.
$$

(3.17)

其中ψ表示引力波的极化角，也就是源坐标系与探测器坐标系重合需要旋转的角度。双星系统的引力波信号可以写成:

$$
h_{+,(\xi)}(\xi) = \sum_{n} h_{+,x}^{(n)} e^{in\Psi(\xi)},
$$

(3.18)

其中$\Psi(\xi)$是轨道相位，表示为

$$
f_{n}(\xi) = \frac{n \partial \Psi}{\pi \partial t}.
$$

(3.19)

对于双星系统而言，当轨道偏心率很小并且积分性不是很强的时候，主导的只有$n = 2$的四级辐射部分，即

$$
f(\xi) = f_{2}(\xi).
$$

(3.20)

通过后牛顿近似可得:

$$
h_{+}(\xi) = \frac{2M(\pi f(\xi))^{2/3}}{D_{L}}(1 + \cos^{2}t)\cos(2\Psi(\xi) + \phi_{0}),
$$

(3.21)

$$
h_{x}(\xi) = \frac{4M(\pi f(\xi))^{2/3}}{D_{L}}\cos\sin(2\Psi(\xi) + \phi_{0}),
$$

(3.22)
其中 \mathcal{M} 是 Chirp Mass，m_1, m_2 是双星系统中两个双星的质量，\mathcal{M} 表示为

$$
\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}.
$$

D_L 是光度距离。

ι 是双星轨道相对于地球黄道面的偏角。

§3.4.2 探测器响应

探测器对引力波的响应极其复杂，习惯上我们把航天器放入以太阳为中心的坐标系中。我们以航天器 i, j 为例，引力波入射引起由航天器 i 发出被航天器 j 接收的光子的光程变化为：

$$
\delta \ell_{ij}(t) = \frac{1}{2} \frac{\hat{r}_{ij}(t) \otimes \hat{r}_{ij}(t)}{1 - \hat{k} \cdot \hat{r}_{ij}(t)} : \int_{\xi_i}^{\xi_j} h(\xi)d\xi,
$$

其中“$:$”表示张量缩并，$\hat{r}_{ij}(t)$ 表示由航天器 i 到航天器 j 的单位向量。

如果航天器 i 在 t_i 时刻发出的光子由航天器 j 在 t_j 时刻接收，$\hat{r}_i(t_i)$ 表示航天器 i 在 t_i 时刻的位置坐标，$\hat{r}_j(t_j)$ 表示航天器 j 在 t_j 时刻的位置坐标，$\ell_{ij}(t_i)$ 是航天器 i 和航天器 j 在 t_i 时刻的距离，则有

$$
\hat{r}_{ij}(t_i) = \frac{\hat{r}_j(t_j) - \hat{r}_i(t_i)}{\ell_{ij}(t_i)}.
$$

对任意的引力波信号 $h(\xi)$，我们可以做傅里叶分解为：

$$
h(\xi) = \int_{-\infty}^{+\infty} \tilde{h}(f)e^{2\pi if\xi}df.
$$

所以式 (3.24) 可以写成：

$$
\delta \ell_{ij}(t) = \ell_{ij}(t) \int_{-\infty}^{+\infty} D(f, t, \hat{k}) : \tilde{h}(f)e^{2\pi if\ell_{ij}(t)}df,
$$

一个臂 ij 的探测器张量为：

$$
D(f, t, \hat{k}) = \frac{1}{2} (\hat{r}_{ij}(t) \otimes \hat{r}_{ij}(t)) \Gamma(f, t, \hat{k}),
$$

转移函数为：

$$
\Gamma(f, t, \hat{k}) = \text{sinc} \left(\frac{f}{2f_{ij}^*} (1 - \hat{k} \cdot \hat{r}_{ij}(t)) \right) \exp(i \frac{f}{2f_{ij}^*} (1 - \hat{k} \cdot \hat{r}_{ij}(t))),
$$

其中：

$$
f_{ij}^* = \frac{c}{2\pi \ell_{ij}}.
$$

33
它表示ij臂长对应的转移频率。

转移函数是因为引力波与探测器之间的相互作用产生的。对于频率大于转移频率的引力辐射，引力波的周期小于航天器之间的光传播时间，转移函数就使得引力波产生的自我抵消的效应；当引力波的频率小于转移频率时，转移函数接近于1。这导致LISA带宽自然地被分成高低频区域，可以帮助我们近似探测器的响应。

§3.4.3 低频近似

因为到达太阳系的引力波的波源十分遥远，被探测到的引力波完全可以看成是平面波，并且微弱的可以使用线性近似。空间引力波探测器的完全响应十分复杂，因为转移函数中固有臂长的扰动和引力波信号的抵消等。在第一种的探测器的近似中，我们将忽略这些影响，将在相同时间评估所有航天器的位置。这种近似值最初是由Cutler 制定的，可以看做是LIGO响应的扩展。航天器的平均臂长为300 万千米，通过式 (3.30) 计算得它的转移频率大约是15.9mHz。所以在进行LISA数据处理时，当引力波的频率小于该转移频率时，转移函数值设为1，我们可以使用低频近似（Low Frequency Approximation）。本文中模拟白矮双星系统的单频引力波信号，我们参考MLDC1B 中给出的白矮双星辐射的引力波频段，在4.3mHz附近随机产生频率f，小于15.9mHz，接下来我们使用低频近似。我们以一个航天器为例，等式 (3.24) 可以写成:

\[
\delta \ell_{ij}(t) \approx \frac{1}{2} \hat{r}_{ij}(t) \otimes \hat{r}_{ij}(t) : h(\xi(t))(\xi_j - \xi_i) \\
= L[\hat{r}_{ij}(t) \otimes \hat{r}_{ij}(t) : h(\xi(t))].
\]

(3.31)

接下来给出了航天器之间的相对位置，如图3.3 所示:

图中 \(L_1 = L_{23}, L_2 = L_{13}, L_3 = L_{12}\)表示探测器之间的两两瞬时距离，\(\vec{n}_1, \vec{n}_2, \vec{n}_3\)为探测器两两之间的单位向量，表示如下:

\[
\vec{n}_1 = \frac{\vec{r}_2(t) - \vec{r}_3(t)}{L_1},
\]

(3.32)

\[
\vec{n}_2 = \frac{\vec{r}_3(t) - \vec{r}_1(t)}{L_2},
\]

(3.33)

\[
\vec{n}_3 = \frac{\vec{r}_1(t) - \vec{r}_2(t)}{L_3}.
\]

(3.34)

在忽略噪声和引力波频远小于转移频率的情况下，航天器1输出的信号为:

\[
X' = \frac{\delta \ell_{12}(t - 2L) + \delta \ell_{21}(t - L)}{2L} - \frac{\delta \ell_{13}(t - 2L) + \delta \ell_{31}(t - L)}{2L} \\
\sim \frac{\delta \ell_{12}(t) + \delta \ell_{21}(t) - \delta \ell_{13}(t) - \delta \ell_{31}(t)}{2L}
\]

(3.35)
图 3.3 航天器之间的相对位置

利用式（3.9）、式（3.18）、式（3.31），上式（3.35）可以表示为：

$$X'(t) = h_+(\xi_1(t))F^+(t) + h_\times(\xi_1(t))F^\times(t),$$ \hspace{1cm} (3.36)

其中：

$$F^+(t) = \frac{1}{2}(\cos(2\psi)D^+(t) - \sin(2\psi)D^\times(t)),$$ \hspace{1cm} (3.37)

$$F^\times(t) = \frac{1}{2}(\cos(2\psi)D^+(t) + \cos(2\psi)D^\times(t)),$$ \hspace{1cm} (3.38)

$$D^+(t) = (\vec{n}_3(t) \otimes \vec{n}_3(t) - \vec{n}_2(t) \otimes \vec{n}_2(t)) : e^+,$$ \hspace{1cm} (3.39)

$$D^\times(t) = (\vec{n}_3(t) \otimes \vec{n}_3(t) - \vec{n}_2(t) \otimes \vec{n}_2(t)) : e^\times,$$ \hspace{1cm} (3.40)

以太阳为中心，因为每个航天器的初始黄经相差不大，并且在模拟过程中几乎没有影响，所以我们认为每个航天器的初始黄经相同，都等于质心的初始黄经。所以：

$$\xi_1(t) = \xi(t)$$

$$= t - \hat{k} \cdot \vec{r}/c$$ \hspace{1cm} (3.41)

$$= t + R\sin\theta\cos(\alpha(t) - \phi)/c.$$

由此我们可以得出航天器1的引力波信号。
§3.5 模拟探测器输出的数据

由于目前没有空间引力波探测器发射及运行，所以我们在进行空间引力波数据处理的时候都是使用的模拟数据。我们将按照以上给出的原理和方法来模拟引力波信号和噪声信号，以便进行后续的处理和分析。

本文的引力波信号的波源是白矮星双星系统，所以我们需要给定两个白矮星的质量来进行模拟。在已知的白矮星中，质量最低的为0.17个太阳的质量，质量最大的是1.33个太阳的质量，但是质量分布明显的在0.6个太阳质量是个高峰，大多数质量都在0.5 到0.7个太阳质量之间，所以我们选择在0.5 和0.7之间随机生成两个数，作为双白矮星系统中两个白矮星的质量，分别为m_1和m_2。从而我们可以利用（3.23）式计算出\mathcal{M} (chirp mass)。

我们模拟的采样时间为一年，采样间隔为10s，所以我们可以计算出有$N = 3155756$个采样点。因为κ和λ都是初始相位，我们在$[0, \pi/2]$区间随机生成两个数，分别作为κ和λ的值，由此我们可以利用（3.4）式和（3.5）式来确定α 和β 的值，由此我们可以利用（3.1）式、（3.2）式、（3.3）式确定探测器的轨道 (如图3.4所示)，从图中我们可以看出三个航天器的轨道一致，只有微小的位置差异。

图 3.4 三个航天器的轨道

我们可以把α和β的值带入到（3.6）式、（3.7）式、（3.8）式分别计算出三个航天器两两之间的距离变化，图3.5给出了三个卫星在飞行期间随着时间的位置变化，我们可以直
第三章 模拟双白矮星的探测数据

我们观察到三个航天器两两之间的距离变化类似于正余弦的变化曲线，这种变化来自于轨道运动。

图 3.5 三个航天器两两之间的距离变化

接下来，我们需要模拟引力波源的位置，波源在空间中的的位置由{θ, φ}决定，其中0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π。在进行模拟实验时，我们分别在π/6 和π/6 附近随机生成θ 和φ的值，因此θ和φ为已知数。

双星轨道面相对于黄道面的倾角τ的取值范围为0 ≤ τ ≤ π，所以我们用计算机随机生成τ的值，所以τ已知。

对于极化角ψ, -π/4 ≤ ψ ≤ π/4，随机生成极化角ψ，所以ψ已知。

我们需要模拟出确定的引力波信号，下面我们来模拟引力波的振幅, 因为白矮双星系统的辐射的引力波是单频信号，所以我们把振幅定义为：

$$ h_0 = \frac{4M(\pi f(\xi))^{2/3}}{D_L} = \frac{4\xi M f}{{D_L}^{2/3}}. $$

（3.42）

我们已经根据（3.23）式由双白矮星的质量计算出M的值，我们仍需给定光度距离D_L的值。引力波源是白矮双星系统，所以我们给定适当的光度距离$D_L = 6630 \text{Kpc}/c$. 上节中已经给出了随机生成的引力波的频率f（已知），由此可以根据式（3.42）计算出引力波的振幅为：h_0（已知）。
另外，引力波的初始相位的取值范围为 $0 \leq \phi_0 \leq 2\pi$，在这里我们随机生成引力波的初始相位为：ϕ_0，因此ϕ_0已知。

以上我们随机生成了模拟引力波信号的所有参数，根据等式 (3.36) 我们可以得到一个航天器的引力波信号的时间序列 X'。

以引力波信号的时间序列 X' 为例，我们给出双白矮星产生的引力波在一年的周期中随时间的变化（如图3.6）。图3.5中时间周期为一年，横轴时间的量级为 10^7，点画的点比较密集，所以为了更直观地感受双白矮星引力波波形的形状，给于引力波信号随时间变化的前100 个点的趋势图（如图3.7），我们可以看到单个双白矮星的引力波信号类似于正余弦函数。

图 3.6 引力波随时间的变化图

同样地，我们来给出航天器2的引力波信号，根据下面的等式：

$$D_2^+(t) = (\vec{n}_1(t) \otimes \vec{n}_1(t) - \vec{n}_3(t) \otimes \vec{n}_3(t)) : e^+, \quad (3.43)$$

$$D_2^x(t) = (\vec{n}_1(t) \otimes \vec{n}_1(t) - \vec{n}_3(t) \otimes \vec{n}_3(t)) : e^x. \quad (3.44)$$

把 (3.43) 式、(3.44) 式带入 (3.37) 式、(3.38) 再带入 (3.36) 可得一个时间序列 Y'。
图 3.7 引力波随时间变化的前100个点

最后我们来给出航天器3的输出信号，根据下面的等式：

\[D^+_3(t) = (\bar{n}_2(t) \otimes \bar{n}_2(t) - \bar{n}_1(t) \otimes \bar{n}_1(t)) : e^+, \quad (3.45) \]

\[D^\times_3(t) = (\bar{n}_2(t) \otimes \bar{n}_2(t) - \bar{n}_1(t) \otimes \bar{n}_1(t)) : e^\times. \quad (3.46) \]

把 (3.45)式、(3.46) 式带入 (3.37) 式、(3.38) 式再带入 (3.36) 可得一个时间序列Z’。

我们已经完全模拟出三个航天器的引力波信号，最后我们再加上模拟的噪声，就是我们需要进行处理的时间序列X, Y, Z，即：

\[X = X' + n(t), \quad (3.47) \]

\[Y = Y' + n(t), \quad (3.48) \]

\[Z = Z' + n(t). \quad (3.49) \]

以输出的时间序列X为例，做出引力波信号和噪声在时域的图（如图3.8），从图中可以看出引力波信号藏于噪声中。我们需要从中把信号从噪声中分离出来，并进行参数估计。
图 3.8 引力波信号和噪声在时域的图

图 3.9 引力波信号在频域的图
在时域中，我们不能直接利用时间序列把引力波信号提取出来，所以我们需要作出一些变化，把引力波信号转换到频域中，从而方便我们提取引力波信号。我们运用傅里叶变换来实现，下文中会详细介绍关于需要用到的傅里叶变换的一些理论知识。首先，对不加噪声的信号进行傅里叶变换，即 \(F(X') = \hat{X'} = \int x'(t)e^{-i2\pi ft}dt \)，画出引力波信号（不加噪声）在频域的图（如图3.9），可以看到一个很明显的峰值。

在进行模拟数据的过程中，我们严格按照中国科学院两期科学先导研究的任务设计进行的，数据都是基于严格的理论基础产生的，确保了数据的准确性。在整个模拟实验过程中，我们严格按照MLDC模拟数据的标准进行，具有一定的可靠性。考虑到实验的严密性，我们在参数合理的范围内随机生成有关参数，使得下文中的数据处理更加有意义。
第四章 引力波数据处理分析

§4.1 离散傅里叶变换

在进行数据处理的整个过程中，傅里叶变换架起了时域和频域之间的桥梁，主要用途是把探测器输出的引力波信号和噪声混合在一起的时间序列进行傅里叶变换到频域上。以下主要介绍在数据处理过程中用到的离散傅里叶变换的内容和性质。

（a）离散傅里叶变换的定义

为方便数据的处理和分析，我们采用的离散傅里叶变换（DFT）形式与MATLAB中的傅里叶变换形式一致，即：

$$ X_F(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn} \quad (4.1) $$

其中：

$$ W_N = e^{-\frac{2\pi i}{N}} \quad W_N^{kn} = e^{-\frac{2\pi i kn}{N}}. \quad (4.2) $$

$X_F(k)$为DFT系数；$x(n)$是一个均匀采样序列，$n = 0, 1, \cdots, N - 1$；T为采样时间间隔。

（b）离散傅里叶逆变换的定义

离散傅里叶逆变换定义为：

$$ x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_F(k)W_N^{-kn} \quad n = 0, 1, \cdots, N - 1, \quad (4.3) $$

$$ (W_N^{kn})^* = W_N^{-kn} = e^{\frac{2\pi i kn}{N}}. \quad (4.4) $$

其中$x(n)$表示n个采样数据，上标”*”表示复共轭运算。

（c）离散傅里叶变换的线性性质

离散傅里叶变换的线性性质：给定$[ax_1(n) + bx_2(n)] \Leftrightarrow [aX_1^F(k) + bX_2^F(k)]$，则：

$$ x_1(n) \Leftrightarrow X_1^F(k), x_2(n) \Leftrightarrow X_2^F(k). \quad (4.5) $$

43
其中a和b均为常数。

(d) 离散傅里叶变换的复共轭定理

复共轭定理：对于N点DFT，当x(n)为实数列时，有

\[X_f^r \left(\frac{N}{2} + k \right) = X_f^r \left(\frac{N}{2} - k \right), \quad k = 0, 1, \cdots, \frac{N}{2}. \] (4.6)

可以证明X_f(0), X_f(\frac{N}{2})都是实数。

在极坐标形式下，

\[X_f^r(k) = |X_f(k)| \exp[i\Theta(k)]. \] (4.7)

显然，在频域|X_f(k)|对于k是关于N/2的偶函数，称为幅度谱。\Theta(k)对于k是关于N/2的奇函数，称为相位谱。|X_f^r(k)|^2是功率谱，是关于N/2对称的偶函数。在N个DFT系数中，只有(N/2 + 1)个系数是独立的。

§4.2 数据处理的方法

§4.2.1 匹配滤波

探测器输出的时间序列是噪声和引力波信号的组合，引力波信号会埋藏在噪声中，所以最重要的问题就是怎样从噪声中把引力波信号提取出来。

匹配滤波器将最大化相对于噪声被检测的信号的信噪比（SNR），信噪比越大，说明混在信号里的噪声越小。对于高斯平稳噪声，可以通过其功率谱密度（PSD）来充分描述噪声特性。单边功率谱密度定义如下：

\[\langle \tilde{n}^*(f')\tilde{n}(f) \rangle_{ensemble} = \frac{1}{2}S_n(f)\delta(f - f'). \] (4.8)

式 (4.8) 中的S_n(f)被称为是单边功率谱密度。文中按照任务设计模拟使用单边功率谱为

\[S_n^{1/2} = 5 \times 10^{-20} Hz^{-1/2}. \]

我们通常需要计算不同物理参数信号的内积，将最大内积对应的物理参数用作估计值，这个过程称为匹配滤波。

运用匹配滤波技术，需要对引力波源有一个很好的了解，具备很多的理论基础。对于科学院先导二期研究预期的大多数波源辐射的引力波，波形都可以以很高的精度确定下
来。当然并不是所有引力波源在航天器发射前都可以很好的建模，比如：随机背景引力波。如果它的引力波强度比仪器噪声要强，那可以被探测出来。

\[h(\Theta) \text{是引力波信号，定义最优化的信噪比为} \]

\[SNR^2 = (h(\Theta) | h(\Theta)) = 4 \int_0^\infty \frac{|\hat{h}(f, \Theta)|^2}{S_n(f)} \, df. \] \hspace{1cm} (4.9)

用于提取噪声中的引力波信号最主要的技术是匹配滤波，在本文中就是将实际数据与波形模板库中的不同模板做对比，计算每一个模板与实际数据的相关程度，找出与数据最相关的模板，当相关程度达到一定置信水平的时候，就可以说某置信水平探测到了参数为该模板对应的参数的引力波信号。这也是目前地面引力波探测器搜索原始振幅远低于噪声的引力波信号的方式。航天器的大部分预期信号的模板属于以某一特定参数为特征的系列，参数分为内部参数和外部参数，内部参数决定源辐射什么样的引力波波形，即波源自身的物理参数，比如质量、自旋、轨道参数等。外部参数决定探测器收到什么样波形的信号，比如源的距离等。如果这些参数在观测过程中的相位改变有相当大的差异是可以区分的，通过寻找最好的匹配，数据处理会自动测量模板族的参数的最佳值。

数据时序列 \(x(t) \) 由噪声 \(n(t) \) 和引力波信号 \(h(t) \) 组成

\[x(t) = n(t) + h(t; \Theta). \] \hspace{1cm} (4.10)

其中 \(\Theta \) 为引力波信号的参数，\(\Theta \) 的维数是确定波形的参数个数。

在数据处理过程中，我们需要构建一些探测统计量。首先，我们需要定义一些概率：定义我们观测时序列 \(x(t) \) 的概率为 \(P(x) \)。\(P(0) \) 表示数据中没有引力波信号只有噪声的概率，\(P(h) \) 表示数据中含有引力波信号（具有一些可能的参数）的概率。假如时间序列 \(x(t) \) 中没有引力波信号出现，\(P(x|0) \) 表示数据 \(x(t) \) 的条件概率。

得到的数据 \(x(t) \) 的概率用全概率公式表示为：

\[P(x) = P(x|0)P(0) + P(x|h)P(h) \]

\[= P(x|0)P(0) + P(h) \int \, d^N \Theta P(\Theta) P(x|h(\Theta)). \] \hspace{1cm} (4.11)

其中 \(N \) 表示 \(N \) 维参数空间。对于文中波源是银河系白矮星双星系统来说，参数空间是 \(7 \) 维的。由上式对 \(P(x) \) 的全概率公式展开，数据中含有引力波信号的概率为：

\[P(h|x) = \frac{P(x|h)P(h)}{P(x)} = \frac{\Lambda}{\Lambda + P(0)/P(h)}. \] \hspace{1cm} (4.12)

45
其中似然函数比定义为:

\[\Lambda = \int d^N \Theta \Lambda(\Theta), \quad (4.13) \]

\[\Lambda(\Theta) = P(\Theta) \frac{P(x|h(\Theta))}{P(x|0)}. \quad (4.14) \]

因为 \(P(0)/P(h) \) 是常数, 所以 \(P(h|x) \) 随着 \(\Lambda \) 的增大而单调递增, 所以求 \(P(h|x) \) 的最大值就是求 \(\Lambda \) 的最大值, 由上式等式 (4.13) 可得, 求 \(\Lambda \) 的最大值, 就是求 \(\Lambda(\Theta) \) 的最大值。

当噪声是均值为0的高斯噪声时，我们有

\[P(x|0) \propto e^{-\frac{1}{2}(x|h)}. \quad (4.15) \]

假如时间序列 \(x(t) \) 包含任意参数的引力波信号，被输出的 \(x(t) \) 的条件概率为 \(P(x|h) \)。\(\Theta \) 表示为引力波信号的特定参数, \(P(x|h(\Theta)) \) 是假设信号存在且具体参数为 \(\Theta \) 时观测到的数据 \(x(t) \) 的概率。

\[P(x|h(\Theta)) \propto e^{-\frac{1}{2}(x-h(\Theta)|x-h(\Theta))}. \quad (4.16) \]

一般我们缺少参数的有用先验信息，可以假定 \(P(\Theta) \) 是一个常量参数分布, 所以

\[\Lambda(\Theta) \propto \frac{P(x|h(\Theta))}{P(x|0)} \propto e^{(x|h(\Theta)) - \frac{1}{2}(h(\Theta)|h(\Theta))}. \quad (4.17) \]

因为 \(\Lambda(\Theta) \) 是正函数, 所以取对数

\[L(\Theta) = \log \Lambda(\Theta) \]

\[= (x|h(\Theta)) - \frac{1}{2}(h(\Theta)|h(\Theta)). \quad (4.18) \]

4.2.2 \(F - statistic \)

因为需要处理的是白矮星双星系统中的数据，所以我们需要还原7个参数来描述引力波信号和源的位置。参数包括：振幅 \(h_0 \)、频率 \(f \)、黄道经度 \(\theta \)、黄道纬度 \(\phi \)、初始相位 \(\phi_0 \)、极化角 \(\psi \) 和倾角 \(\iota \)，其中振幅和频率是指波源辐射的引力波的振幅和频率，黄道经度和纬度可以确定引力波源的位置，极化角是指源坐标系与探测器坐标系重合需要旋转的角度，倾角指的是双星轨道面相对于地球黄道面的倾角。对于估计的7个参数，我们考虑采用 \(F - statistic \) 来降低参数的维度，具体的工作如下。

在源所在的坐标系张量基底下，在TT规范下两个极化分量分别为：

\[h_x(\xi) = 2h_0 \cos \xi (2\Psi(\xi) + \phi_0), \quad (4.19) \]
我们以探测器X的引力波信号为例，我们可以写成如下形式[24]:

\[
h^X(t) = \sum_{\mu=1}^{4} A^\mu h^X_\mu(t). \tag{4.21}
\]

\(h^X_\mu(t)\) 是基本波形，\(A^\mu\)是独立于探测器X的，可以由初始相位\(\phi_0\)，极化角\(\psi\)，两个偏振振幅\(A_\times\)和\(A_+\)表示，即:

\[
A^1 = A_+ \cos \phi_0 \cos 2\psi + A_\times \sin \phi_0 \sin 2\psi,
\]

\[
A^2 = -A_+ \cos \phi_0 \sin 2\psi - A_\times \sin \phi_0 \cos 2\psi;
\]

\[
A^3 = -A_+ \sin \phi_0 \cos 2\psi + A_\times \cos \phi_0 \sin 2\psi;
\]

\[
A^4 = A_+ \sin \phi_0 \sin 2\psi - A_\times \cos \phi_0 \cos 2\psi,
\]

我们可以进一步将两个偏振振幅\(A_\times\)和\(A_+\)用总体的振幅\(h_0\)和倾角\(\iota\)表示，写成如下形式

\[
A_+ = \frac{1}{2} h_0(1 + \cos^2 \iota), \quad A_\times = h_0 \cos \iota. \tag{4.26}
\]

四个基本的波形\(h^X_\mu(t)\)可以表示为:

\[
h^X_1(t) = a^X(t) \cos(2\pi f \xi),
\]

\[
h^X_2(t) = b^X(t) \cos(2\pi f \xi),
\]

\[
h^X_3(t) = a^X(t) \sin(2\pi f \xi),
\]

\[
h^X_4(t) = b^X(t) \sin(2\pi f \xi),
\]

其中\(a^X(t)\)和\(b^X(t)\)是天线方向图函数。天线方向图函数由引力波源的位置、探测器X的位置和方向决定，表示为:

\[
a^X(t) = \frac{\leftrightarrow^X \rightarrow^X}{\rightarrow^X},
\]

\[
b^X(t) = \frac{\leftrightarrow^X \rightarrow^X}{\rightarrow^X}.
\]

\(\leftrightarrow^X\) 是引力波干涉仪在两个臂\(\vec{n}_2\)和\(\vec{n}_3\)和的长波长响应（Long-wavelength limit），可以表示为:

\[
\leftrightarrow^X \rightarrow^X = (\vec{n}_3 \otimes \vec{n}_3 - \vec{n}_2 \otimes \vec{n}_2)/2.
\]
对于探测器Y和Z也有类似的表达。

由上节可知求
\[L(x; \mathcal{A}, \theta) = (x|h) - \frac{1}{2}(h|h) \]
\[= \mathcal{A}^\mu(x|h_\mu) - \frac{1}{2} \mathcal{A}^\mu(h_\mu|h_\nu) \mathcal{A}^\nu. \]

为了方便计算，我们定义 \(x_\mu(\theta) \equiv (x|h_\mu) \) 和 \(\mathcal{M}_{\mu\nu} \equiv (h_\mu|h_\nu) \mathcal{M}^{\mu\nu} \) 是 \(\mathcal{M}_{\mu\nu} \) 的逆矩阵。我们运用极大似然估计，令 \(\frac{\partial L(x; \mathcal{A}, \theta)}{\partial \mathcal{A}^\mu} = 0 \)

可以得出当 \(\mathcal{A}_{MLE} \) 是 \(\mathcal{M}^{\mu\nu}x_\mu \) 时，\(L(x; \mathcal{A}, \theta) \) 有最大值，记为:

\[\mathcal{F}(x; \theta) = \frac{1}{2} x_\mu \mathcal{M}^{\mu\nu} x_\nu. \]

这就是我们所要求的 \(\mathcal{F} \) 统计量。

4.3 数据处理分析的过程

文中需要处理的数据是航天器探测的白矮星双星系统的辐射引力波信号，入射的引力波信号经过探测器的响应，输出的结果是引力波信号和噪声叠加的时间序列，所以我们要处理的数据就是时间序列。因为空间引力波探测器由三颗卫星构成，所以我们只会得到三个时间序列，分别为X、Y、Z，每个时间序列的长度为 \(N \)。这三个时间序列并非只有引力波信号，而是引力波信号埋藏在噪声中。

对于要分析的单频白矮星双星系统的引力波信号，我们通过 \(\mathcal{F} - statistic \) 将七个参数分为三个内部参数 \(\{ f, \theta, \phi \} \) 和四个外部参数 \(\{ t, \psi, h_0, \phi_0 \} \)，并且可以转化为先求三个内部参数最后再求四个外部参数。

对于单臂的情形，我们根据前面提到的方法，可以求出 \(\mathcal{F} \) 的最大值，从而找出对应的频率和源的位置。但是预研阶段的探测器有三颗卫星，所以我们考虑把 \(\mathcal{F} - statistic \) 这个方法推广到多臂的情形。对于拟合的探测器输出的三列数据X、Y、Z，令 \(B = X, E = (Z-Y)/\sqrt{3} \)，可以计算出B与E是噪声不相关的。记B的数据列为 \(x_I \)，记E 的数据列为 \(x_{II} \)。组合之后的引力波信号由（4.21）式可知，分别记为:

\[h_I(t) = \sum_{\mu=1}^{4} \mathcal{A}h^I_\mu(t) \]
\[h^{II}(t) = \sum_{\mu=1}^{4} \mathcal{A}h^{II}_\mu(t). \]

由上式（4.22）、（4.23）、（4.24）、（4.25）可知 \(\mathcal{A} \) 的值主要由振幅h_0、倾角t、初始相位\(\phi_0 \) 和极大化角\(\psi \) 决定，所以上式（4.36）中 \(\mathcal{A} \) 是相同的，不同的是 \(h^I_\mu(t) \) 和 \(h^{II}_\mu(t) \)。
因为
\[
\leftrightarrow^l d = \leftrightarrow^X d = (\vec{n}_3 \otimes \vec{n}_3 - \vec{n}_2 \otimes \vec{n}_2)/2,
\]

\[
\leftrightarrow^{II} d = \leftrightarrow^E d = \frac{\leftrightarrow^Z d - \leftrightarrow^Y d}{\sqrt{3}}
\]

\[
= \frac{1}{2\sqrt{3}}(\vec{n}_2 \otimes \vec{n}_2 - \vec{n}_1 \otimes \vec{n}_1)
\]

\[
- \frac{1}{2\sqrt{3}}(\vec{n}_1 \otimes \vec{n}_1 - \vec{n}_3 \otimes \vec{n}_3)
\]

\[
= \frac{1}{2\sqrt{3}}(\vec{n}_2 \otimes \vec{n}_2 + \vec{n}_3 \otimes \vec{n}_3 - 2\vec{n}_1 \otimes \vec{n}_1),
\]

所以
\[
da^l = \frac{\leftrightarrow^l d}{d} \cdot \vec{e}_+
\]

\[
b^l = \frac{\leftrightarrow^l d}{d} \cdot \vec{e}_x
\]

\[
da^{II} = \frac{\leftrightarrow^{II} d}{d} \cdot \vec{e}_+
\]

\[
b^{II} = \frac{\leftrightarrow^{II} d}{d} \cdot \vec{e}_x
\]

所以I和II的四个基本波形的表达形式不相同。

因为B和E不相关，所以在进行极大似然估计时有：
\[
L = (x_1|h_1) - \frac{1}{2}(h_1|h_1) + (x_{II}|h_{II}) - \frac{1}{2}(h_{II}|h_{II})
\]

\[
= A^\mu x_\mu - \frac{1}{2}A^\mu A^\mu + A^\mu x^{II}_\mu - \frac{1}{2}A^\mu A^{II}_\mu A^\nu,
\]
其中
\[x_\mu^I = (x_I | h_\mu^I), \quad (4.44) \]
\[x_\mu^{II} = (x_{II} | h_\mu^{II}), \quad (4.45) \]
\[M_{\mu \nu}^I = (h_\mu^I | h_\nu^I), \quad (4.46) \]
\[M_{\mu \nu}^{II} = (h_\mu^{II} | h_\nu^{II}). \quad (4.47) \]

同样地对 \(A^\mu \) 求偏导等于0，得到等式:
\[\frac{\partial L}{\partial A^\mu} = (x_\mu^I + x_\mu^{II}) - (M_{\mu \nu}^I + M_{\mu \nu}^{II}) A^\nu = 0, \quad (4.48) \]

所以
\[A^\mu = [(M_{\mu \nu}^I + M_{\mu \nu}^{II})^{-1}] (x_\mu^I + x_\mu^{II}). \quad (4.49) \]

把上式 (4.49) 带入 (4.43) 可得L的最大值，即:
\[\mathcal{F} = \max_{A^\mu} L
= \frac{1}{2} (x_\mu^I + x_\mu^{II}) [(M_{\mu \nu}^I + M_{\mu \nu}^{II})^{-1}] (x_\nu^I + x_\nu^{II}). \quad (4.50) \]

首先，我们需要搜索三个内部参数 \(\{\theta, \phi, f\} \) 使得 \(\mathcal{F} \) 最大。在进行搜索工作时，我们只知道产生搜索参数真实值的范围，但不能准确地知道三个内部参数的值，我们需要合适地划分参数空间的网格，使得搜索的参数尽可能接近准确值并且能够节省时间。网格的大小不同会影响我们搜索参数的精度和搜索的时间，当我们的网格划分地越密，搜索到的参数精确度越高，但是也越耗时。在本次实验中，我们搜索到的内部参数为:

\[\theta = 1.0370 \]
\[\phi = 0.5290 \]
\[f = 4.299996799 mHz \]

我们仍然需要反演出四个外部参数，步骤如下 [2]: 令
\[A_s^2 = \sum_{\mu=1}^{4} (A^\mu)^2 \]
\[= A_+^2 + A_x^2, \quad (4.51) \]
\[D_a = A_1 A_4 - A_2 A_3 \]
\[= A_+ A_x. \quad (4.52) \]
我们约定$|A_+| \geq |A_\times|$, 所以
\[\Delta = \sqrt{A_+^4 - 4D_a^2} = A_+^2 - A_\times^2 \geq 0, \quad (4.53) \]

解上述两式（4.51）、（4.52）得:
\[A_{+ \times}^2 = \frac{A_+^2 \pm \sqrt{A_+^4 - 4D_a^2}}{2}, \quad (4.54) \]

所以
\begin{align*}
A_\times^2 &= \frac{A_+^2 - \sqrt{A_+^4 - 4D_a^2}}{2}, \quad (4.55) \\
A_+^2 &= \frac{A_+^2 + \sqrt{A_+^4 - 4D_a^2}}{2}. \quad (4.56)
\end{align*}

A_+总是正数，但是A_\times的符号跟D_a一致，在计算时应该注意这一点。

我们计算出A_+, A_\times之后，定义
\[\beta \equiv A_\times/A_+, \quad (4.57) \]
\[b_1 \equiv A_+^3 - \beta A_\times^1, \quad (4.58) \]
\[b_2 \equiv A_\times^3 + \beta A_+^2, \quad (4.59) \]
\[b_3 \equiv \beta A_+^4 - A_\times^1, \quad (4.60) \]

由此我们可以计算出:
\[\psi = \frac{1}{2} \arctan \left(\frac{b_1}{b_2} \right), \quad (4.61) \]
\[\phi_0 = \arctan \left(\frac{b_2}{b_3} \right). \quad (4.62) \]

因为等式（4.26），所以我们可以计算出:
\[h_0 = A_+ + \sqrt{A_+^4 - A_\times^2}, \quad (4.63) \]
\[\cos \tau = \frac{A_\times}{h_0}. \quad (4.64) \]

计算结果为:
\[\psi = 0.0296 \]
\[\phi_0 = 0.8193 \]
\[h_0 = 1.3031 \times 10^{-21} \]
\[\tau = 1.1011 \]
空间引力波探测中关于信号处理分析的研究
第五章 结论与展望

§5.1 评估标准

双白矮星系统是空间引力波探测中的重要波源，模拟双白矮星释放的引力波进行数据处理和分析也变得尤为重要，对我国空间引力波数据处理技术和参加新一轮的MLDC也是重要的一步。这里将采用MLDC 1B的评估标准，因为MLDC 1B中的主要波源也含有银河系内的双白矮星系统，并且MLDC的评估标准也十分规范[11]。我们运用已经估计出的参数带入到原本模拟信号的程序中生成仪器响应后的波形，再把这些数据同并模拟的数据相比，计算恢复的信噪比：

\[SNR(\Theta_{\text{sub}}) = \frac{(A_{\text{true}}|A_{\text{sub}}) + (E_{\text{true}}|E_{\text{sub}})}{\sqrt{(A_{\text{sub}}|A_{\text{sub}}) + (E_{\text{sub}}|E_{\text{sub}})}} \] \hspace{2cm} (5.1)

\[A = (2X - Y - Z)/3, \quad E = (Z - Y)/\sqrt{3}. \] \hspace{2cm} (5.2)

其中A和E是MLDC组织者评估结果时使用的两个噪声不相关的数据组合。A_{true}和E_{true}表示真实的参数值带入模拟信号的程序中生成的数据，A_{sub}和E_{sub}表示估计的参数值（即提交的值）带入模拟信号的程序中生成的数据。

我们仍然需要定义最优信噪比：

\[SNR_{opt} = \sqrt{(A_{\text{true}}|A_{\text{true}}) + (E_{\text{true}}|E_{\text{true}})}. \] \hspace{2cm} (5.3)

定义相关系数:

\[C = SNR/SNR_{opt}. \] \hspace{2cm} (5.4)

对于最理想的检测，C = 1，但是由于仪器噪声的存在，会存在微小的波动。当我们在测量参数时，定义参数的误差:

\[\Delta \Theta^i = \Theta_{\text{sub}}^i - \Theta_{\text{true}}^i. \] \hspace{2cm} (5.5)

我们将利用以上规范的标准去检测整体的估计和各个参数的误差。

§5.2 分析结果

在上一章中我们已经估计出参数空间的7个参数，接下来我们要与真实值进行分析比较并讨论结果。首先我们需要在运行的结果中寻找随机生成的真实值，包括搜索到的三
个内部参数和计算的四个内部参数。经过检测运算，我们可以算出：$C = 0.9729$，与1非常
接近，总体来看这是一个比较好的检测。

我们将利用式（5.5）来计算各个参数的误差，表5.1给出了7个参数的真实值、估计值
和误差。从表中我们可以看出：利用匹配滤波技术和$\mathcal{F} - Statistic$方法，我们可以搜索出
三个内部参数的值，搜索的三个参数f和$\{\theta, \phi\}$的值比较接近真实值，这是因为在网格搜
索中搜索参数的误差大小依赖于我们的网格大小，网格越小搜索的参数误差就越小。外
部参数对探测器的响应的建模非常敏感，所以这些外部参数的误差很容易受到影响。从
估计的四个外部参数结果来看，误差值相比于内部参数的误差值略大，但对整体估计精
确度的影响不大。

§5.3 本文的优点与不足

（1）本文的优点

本文采用的是中国科学院两期科学先导研究的方案，模拟的数据都是基于严格的理
论基础之上进行的，模拟双白矮星引力波信号时，在参数合理的范围内随机生成数值，尽
可能准确地模拟参数，生成引力波的波形和数据，为整个数据处理和分析的过程提供了
可靠的数据来源，这也是做好数据处理和分析的前提条件。我国空间引力波探测器还未
发射也没有真实的探测数据输出，所以本文使用的也是模拟出来的探测数据，但对整个
数据处理过程并没有影响，随机生成的数据使得数据具有随机性，这也确保了实验的严
密性。

在数据处理过程中使用的匹配滤波技术、$\mathcal{F} - Statistic$方法也以相对简便的方法估
计了参数。匹配滤波技术是在噪声中提取信号最常用的一种技术，为信号的提取提供了一
种可行的方法。$\mathcal{F} - Statistic$把参数空间降成三维，方便了我们搜索内部参数，并以内
部参数为基础计算出外部参数，这是$\mathcal{F} - Statistic$的优点。在进行内部参数搜索的过
程中，需要兼顾到搜索的时间和网的的疏密程度，保证内部参数搜索的精确度。

表 5.1 参数估计误差

<table>
<thead>
<tr>
<th>参数</th>
<th>频率f</th>
<th>黄经θ</th>
<th>黄纬ϕ</th>
<th>振幅$h_0(10^{-22})$</th>
<th>倾角ι</th>
<th>偏振角ψ</th>
<th>初始相位ϕ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>真实值</td>
<td>4.3mHz</td>
<td>1.0407</td>
<td>0.5273</td>
<td>9.2212</td>
<td>0.7370</td>
<td>0.1860</td>
<td>0.6758</td>
</tr>
<tr>
<td>估计值</td>
<td>4.299996799499mHz</td>
<td>1.037</td>
<td>0.5290</td>
<td>13.0310</td>
<td>1.1011</td>
<td>0.0296</td>
<td>0.8193</td>
</tr>
<tr>
<td>误差</td>
<td>-3.2005mHz</td>
<td>-0.0037</td>
<td>0.0017</td>
<td>3.8098</td>
<td>0.3641</td>
<td>-0.1564</td>
<td>0.1435</td>
</tr>
</tbody>
</table>
第五章 结论与展望

（2）本文的不足

本文在描述地面引力波探测器探测到的引力波和对引力波源的分类时，只是进行了
g大概的描述，没有进行深入的研究和分析，对于已经探测到的引力波事件和不同的引力
波源还需要更多细致的分析。我国把空间引力波探测的作为重大项目，必然有许多难点
需要克服，比如：热噪声，频率噪声等，但文中并未对引力波空间探测的难点进行深入的
研究。希望在不久的将来，科学家们能够克服这一系列的困难，成功发射引力波空间探
测器，早日开展引力波空间探测的项目。

文中在进行数据处理和分析的过程中，虽然使用了匹配滤波、$\mathcal{F} - Statistic$的方法降
低了参数空间的维度，对参数进行了估计，但是文章中有很多不足之处。文中模拟的只
是单个的双白矮星系统释放的引力波信号，不需要把多个信号分开；而在实际情况中，
空间引力波探测器会探测到成千上万个双白矮星的引力波信号，我们在进行数据处理的
过程中不仅要把信号从噪声中提取出来，还要把每个信号都分离出来，完全把每个信号
都分离出来对于数据处理是一个很大的难题。另外，本文只是模拟了一种引力波源释放
的引力波信号，而在实际的空间引力波探测中的波源种类有很多，所以会有很多不同波
源释放的引力波信号混杂在一起，在进行参数估计的过程中，参数空间的大小也不同，所
使用的方法也有所不同，这在实际情况中也增加了困难。在进行MLDC的挑战时数据的
长度也不一样，有的波源的长度为一年，有的波源长度为两年，而本文中只有双白矮星一
种波源，时间长度为一年，对于两年的数据集，会有更多的数据点，在进行参数搜索时也
会增加难度。

本文是我国空间引力波探测过程中数据处理分析过程中的一小步，希望本文能够为
以后的空间引力波数据处理工作打下一个基础，以后有机会在这个基础上更加深入地
研究，并不断探索更加高效、高精度的方法。

§5.4 展望未来

现阶段，全世界的地面引力波探测技术比空间引力波探测技术发展的更加成熟，地面
引力波探测器也取得了显著的探测结果，截止到本论文完成时，已经成功探测到双黑洞
并合和双中子星并合事件。

地面引力波探测器的成功探测增加了科学家们研究引力波领域的信心，促进了引力
波领域的发展。人们想要通过探测引力波探索宇宙，不仅要熟知其理论进行模拟实验，更
要不断地提高探测技术。国外的探测技术不断的发展，我国也在努力促进地面探测引力波的发展，因为地面探测的探测频段也处于至关重要的位置，所以国内的很多专家不断地提出和改进地面探测的技术。在空间引力波探测方面，我国也需要吸引更多的专家参与其中，一起努力完成空间引力波的探测。

随着地面引力波探测和空间引力波探测的发展，数据处理技术更要不断提高。模拟LISA数据挑战对LISA 数据处理发展起着至关重要的作用，希望我们能够有机会积极参加挑战，以学习提高的态度向其他参与者学习，不断提高。

我们国家的空间引力波探测计划正在不断地开展当中，希望未来我国的空间引力波探测器能够在计划的时间内成功发射。我们国家关于引力波数据处理技术还处于发展阶段，希望国内会有更多的人参与到引力波数据处理的学习讨论中，逐渐形成一个更加专业的数据处理小组，发展国内的数据处理技术，为我国的空间引力波探测项目提供更多的支持，也为全球的数据处理工作贡献自己的力量。
参考文献

[38] Mock LISA Data Challenge homepage http://astrogravs.nasa.gov/docs/mldc.

[40] LIGO homepage https://www.ligo.caltech.edu/.

空间引力波探测中关于信号处理分析的研究
致谢

在本论文完成之时，我要在此献上我最诚挚的感谢！

感谢我的老师刘润球研究员，感谢刘老师对我的栽培和在中国科学院交流学习期间提供的帮助。当学习方面遇到困惑的时候，我总是会第一时间跟刘老师交流，刘老师也总会给出一些好的建议。从老师身上我可以感受到对科学研究的专注，这让我感到无比的佩服并影响着我。

感谢王龚博士，感谢王老师教我一些专业知识并带领我开始学习引力波数据处理。当他在国内的那段时间，每天都会给我布置任务并且帮我答疑解惑，教我一些必备的基础知识。当他出国之后，我有不懂的地方还是会请教他，他也会及时帮我解决问题。

感谢龚雪飞博士、徐鹏博士、罗子人博士对我的帮助，在学术研究内容上有不懂的地方，我可以随时向他们请教，他们总会耐心地讲解。虽然他们都是老师，但也是我的师兄师姐，有着像朋友一样的亲切感。

感谢中国科学院的研究生同学给予我的帮助，和他们在一起学习能够学到很多东西，也激励自己想变得更加优秀。感谢河南大学数学与统计学院的研究生辅导员和同学，在我在中国科学院学习的三年时间，他们成为我和学院联系的纽带，感谢他们对我的帮助。

感谢中国科学院提供了一个良好的学习和生活环境，在这里可以感受到浓厚的学术氛围，让自己专心学习和研究。

感谢河南大学数学与统计学院为我提供了一个到中国科学院学习的机会，让我的视野变得更加开阔。

张华婷
2018年 6 月
空间引力波探测中关于信号处理分析的研究
明止德於新善