A Conceptual Introduction to Markov Chain Monte Carlo Methods

Abstract

Markov Chain Monte Carlo (MCMC) methods have become a cornerstone of many modern scientific analyses by providing a straightforward approach to numerically estimate uncertainties in the parameters of a model using a sequence of random samples. This article provides a basic introduction to MCMC methods by establishing a strong conceptual understanding of what problems MCMC methods are trying to solve, why we want to use them, and how they work in theory and in practice. To develop these concepts, I outline the foundations of Bayesian inference, discuss how posterior distributions are used in practice, explore basic approaches to estimate posterior-based quantities, and derive their link to Monte Carlo sampling and MCMC. Using a simple toy problem, I then demonstrate how these concepts can be used to understand the benefits and drawbacks of various MCMC approaches. Exercises designed to highlight various concepts are also included throughout the article.

Type