The detection of gravitational waves is possible thanks to a multidisciplinary approach, involving different disciplines such as astrophysics, physics, engineering and quantum optics. Consequently, it is important today for teachers to introduce the basic features of gravitational waves science in the undergraduate curriculum. The usual approach to gravitational wave physics is based on the use of traceless and transverse coordinates, which do not have a direct physical meaning and, in a teaching perspective, may cause misconceptions. In this paper, using Fermi coordinates, which are simply related to observable quantities, we show that it is possible to introduce a gravitoelectromagnetic analogy that describes the action of gravitational waves on test masses in terms of electric-like and magnetic-like forces. We suggest that this approach could be more suitable when introducing the basic principles of gravitational waves physics to students.