Gravitational Wave Data Analysis

  • 7.1 Random Processes for Probability Theory 269

    • 7.1.1 Power Spectrum
    • 7.1.2 Gaussian Noise 273
  • 7.2 Optimal Detection Statistic 275

    • 7.2.1 Bayes’s Theorem 275
    • 7.2.2 Matched Filter 276
    • 7.2.3 Unknown Matched Filter Parameters 277
    • 7.2.4 Statistical Properties of the Matched Filter 279
    • 7.2.5 Matched Filter with Unknown Arrival Time 281
    • 7.2.6 Template Banks of Matched Filters 282
  • 7.3 Parameter Estimation 286

    • 7.3.1 Measurement Accuracy 286
    • 7.3.2 Systematic Errors in Parameter Estimation 289
    • 7.3.3 Confidence Intervals 291
  • 7.4 Detection Statistics for Poorly Modelled Signals 293

    • 7.4.1 Excess-Power Method 293
  • 7.5 Detection in Non-Gaussian Noise 295

  • 7.6 Networks of Gravitational-Wave Detectors 298

    • 7.6.1 Co-located and Co-aligned Detectors 298
    • 7.6.2 General Detector Networks 300
    • 7.6.3 Time-Frequency Excess-Power Method for a Network of Detectors
    • 7.6.4 Sky Position Localization for Gravitational-Wave Bursts 305
  • 7.7 Data Analysis Methods for Continuous-Wave Sources 307

    • 7.7.1 Search for Gravitational Waves from a Known, Isolated Pulsar 309
    • 7.7.2 All-Sky Searches for Gravitational Waves from Unknown Pulsars 316
  • 7.8 Data Analysis Methods for Gravitational-Wave Bursts 317

    • 7.8.1 Searches for Coalescing Compact Binary Sources 318
    • 7.8.2 Searches for Poorly Modelled Burst Sources 332
  • 7.9 Data Analysis Methods for Stochastic Sources 333

    • 7.9.1 Stochastic Gravitational-Wave Point Sources 344
  • Basic Signal Processing

    • Signal
      • Analog vs. Digital
      • Sampling Frequency
    • Fourier Transform
    • Convolution
      • Windowing
    • Filtering
      • LTI System
      • Transfor Function
    • Discrete Time Filtering
    • Nyquist Sampling Theorem
    • Discrete Fourier Transform
      • Fast Fourier Transform
    • DFT & Discrete Time Convolution
    • Digital Filtering
      • Digital Filter Design
    • Linear Algebra Approach to Signal Processing
      • Signal and Vector Space
      • Fourier Basis
      • Wavelet Basis
    • Time-frequency Analysis
  • Appendix Introduction to Signal Processing

    • Sampling and Reconstruction
    • Discrete-Time Systems
    • FIR Filtering and Convolution
    • z-Transforms
    • Transfer Functions
    • Digital Filter Realizations
    • Signal Processing Applications
    • DFT/FFT Algorithms
    • FIR Digital Filter Design
    • IIR Digital Filter Design
  • Appendix Bayesian Inference and Computation

    • Markov Chain Monte Carlo
    • Model Selection and Nested Sampling
    • Assigning Prior Distributions
  • Appendix Gravitational-Wave Detector Data

    • Gravitational-Wave Detector Site Data
    • Idealized Initial LIGO Model